Cultural eutrophication threatens numerous ecological and economical resources of Florida’s coastal ecosystems, such as beaches, mangroves, and seagrasses. In April 2021, an infrastructure failure at the retired Piney Point phosphorus mining retention reservoir garnered national attention, as 814 million liters of nutrient rich water were released into Tampa Bay, Florida over 10 days. The release of nitrogen and phosphorus-rich water into Tampa Bay – a region that had been known as a restoration success story since the 1990s – has highlighted the potential for unexpected challenges for coastal nutrient management. For a year after the release, we sampled bi-weekly at four sites to monitor changes in nutrients, stable isotopes, and phytoplankton communities, complemented with continuous monitoring by multiparameter sondes. Our data complement the synthesis efforts of regional partners, the Tampa Bay and Sarasota Bay Estuary Programs, to better understand the effects of anthropogenic nutrients on estuarine health. Phytoplankton community structure indicated an initial diatom bloom that dissipated by the end of April 2021. In the summer, the bay was dominated by Karenia brevis, with conditions improving into the fall. To determine if there was a unique carbon (C) and nitrogen (N) signature of the discharge water, stable isotope values of carbon (δ13C) and nitrogen (δ15N) were analyzed in suspended particulate material (SPM). The δ15N values of the discharge SPM were −17.88‰ ± 0.76, which is exceptionally low and was unique relative to other nutrient sources in the region. In May and early June of 2021, all sites exhibited a decline in the δ15N values of SPM, suggesting that discharged N was incorporated into SPM after the event. The occurrence of very low δ15N values at the reference site, on the Gulf Coast outside of the Bay, indicates that some of the discharge was transported outside of Tampa Bay. This work illustrates the need for comprehensive nutrient management strategies to assess and manage the full range of consequences associated with anthropogenic nutrient inputs into coastal ecosystems. Ongoing and anticipated impacts of climate change – such as increasing tropical storm intensity, temperatures, rainfall, and sea level rise – will exacerbate this need.
more »
« less
Geoarchaeology and Coastal Morphodynamics of Harbor Key (8MA15): Indigenous Persistence at a Partially Inundated Native Shell Mound Complex in Tampa Bay, Florida
Applying a coastal-geoarchaeological approach, we synthesize stratigraphic, sedimentological, mollusk-zooarchaeological, and radiometric datasets from recent excavations and sediment coring at Harbor Key (8MA15)—a shell-terraformed Native mound complex within Tampa Bay, on the central peninsular Gulf Coast of Florida. We significantly revise the chronological understanding of the site and place it among the relatively few early civic-ceremonial centers in the region. Analyses of submound contexts revealed that the early first millennium mound center was constructed atop a platform of sand and ex situ cultural shell deposits that were reworked during ancient storm landfalls around 2000 BP. We situate Harbor Key within a seascape-scale stratigraphic and paleoenvironmental framework and show that the shellworks comprise an artificial barrier protecting the leeward estuary basin (and productive inshore wetlands) from high-energy conditions of the open bay and swells from the Gulf of Mexico. The sedimentary and archaeological records attest to the long-term history of morphodynamic interaction between coastal processes and Indigenous shell terraforming in the region and suggest that early first millennium mound building in Tampa Bay was tied to the recognition and reuse of antecedent shellworks and the persistent management of encompassing cultural seascapes.
more »
« less
- Award ID(s):
- 2024397
- PAR ID:
- 10462227
- Date Published:
- Journal Name:
- American Antiquity
- ISSN:
- 0002-7316
- Page Range / eLocation ID:
- 1 to 23
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Although shell middens and mounds often occupy the same intertidal spaces as coastal wetlands, biophysical interactions between these cultural features and wetlands are under-investigated. To this end, our geoarchaeological and zooarchaeological research at three coastal archaeological sites within the Tampa Bay Estuary, USA, sought to understand the interactions between shell-bearing sites, sea-level rise, storms, and migrating wetland habitats. Percussion core transects document the accretion of mangrove peat atop intact shell midden, illustrating the ability of mangrove forests to encroach shell midden and preserve cultural material below. Landward wetland deposits are thicker and muddier than those along the seaward margin of the sites, suggesting that shell-bearing sites attenuate wave energy much like other shoreline stabilization structures. Differences in sedimentology, stratigraphy, and invertebrate species compositions highlight the variability in storm impacts between sites. Storm-driven depositional events are identified by medium-to-fine sand beds with high densities of fragmented shell and small intertidal zone snails. Geospatial analyses indicate that wetland encroachment is already occurring at 247 archaeological sites within the Tampa Bay Estuary. Approximately 100 additional archaeological sites currently located in upland habitats may provide topographic relief for migrating coastal wetlands in the future. We contend that shell middens and mounds constructed by Indigenous peoples are important components within estuarine mosaics, as they have been for millennia. We advocate for further collaboration between archaeologists and estuary managers and the inclusion of descendant communities to co-manage the future of their past.more » « less
-
We present digital documentation of the Cockroach Key archaeological site in Tampa Bay on the western coast of Florida, USA. The site consists of a mound and midden complex constructed by Native Americans between around 100 and 900 CE. Although well known to antiquarians of the 1800s and archaeologists of the early 1900s, the site has slowly become “hidden in plain sight” to both archaeologists (owing to the lack of contemporary investigations) and the public (owing to the density of vegetation). We use LiDAR-based mapping and ground-penetrating radar to document the site’s surface and subsurface features.more » « less
-
Abstract As large areas of the Mississippi River Delta (MRD) of the USA disappear into the sea, present-day communities and cultural resources are lost. While the land loss may be readily quantified, describing the impact of cultural losses is less straightforward because cultural elements are frequently less tangible and difficult to map, identify, and categorize. The elision of cultural components of landscapes and ecosystems is evident in restoration practices and policies, although numerous scholars have identified the interlinked processes of culture and ecology as critical to rebuilding healthy and resilient environments. We define and measure cultural-ecosystem resilience (CER) in the Mississippi River Delta through analyses of Indigenous oral histories, mound-building practices and settlement patterns, and the persistence and reuse of archaeological sites. CER describes a system containing resilient properties embedded in human-natural settings including river deltas that may manifest in oral cultural traditions, architecture, and the selection of habitable environments. Our interdisciplinary approach demonstrates the role of human-modified landscapes in generating resilience for past and present coastal communities and highlights the importance of consulting records of historic and modern Indigenous traditions in shaping sustainable landscape-management strategies. Results show that archaeological earthen and shell mounds made by Native American Gulf Coast and MRD communities have been persistent features that endured for centuries and are sited in regions of high multicultural value within the dynamic delta. Yet, we document the rapid 20th-century loss of mounds due to coastal erosion, industry, and other human land-use practices. Present-day and future coastal land loss endangers what remains of these keystone features and thus lowers the resilience of modern Mississippi River Delta communities.more » « less
-
ABSTRACT Plio-Pleistocene sediments from the southwestern Florida Peninsula contain an extraordinary density and diversity of marine mollusk and vertebrate fossils which, collectively, document major faunal shifts on the Florida Platform through a period of profound environmental change. Systematic study of these fossil assemblages and the environments in which they lived has been limited, however, by: i) a lack of outcrop sections spanning the full Plio-Pleistocene stratigraphy of the region and ii) major uncertainties in correlation between previous study sites due to extreme lateral variability in coastal paleoenvironments. Here, we describe a new stratigraphic section from Florida Shell Quarry in Charlotte County, Florida, which contains fossil-rich deposits of each major Plio-Pleistocene unit in the area (the Tamiami, Caloosahatchee, Bermont, and Fort Thompson formations). Bulk sediment samples collected from 22 horizons were used to broadly characterize stratigraphic variations in lithology and faunal content. Predation intensity was estimated from drill-hole frequency among populations of the bivalve Chione spp. While all studied formations were mainly deposited under marine conditions, both lithologic and faunal facies shifts within the Caloosahatchee and Bermont units indicate periods of pronounced freshwater influence. Faunal diversity is relatively high in the Tamiami, Caloosahatchee, and Bermont units but declines in the Fort Thompson. Similarly, predation intensity is high in the Caloosahatchee and Bermont units but lower in the Fort Thompson at the sampled sites. In addition to characterizing changes in the local paleoenvironment, we propose a sequence stratigraphic model for the section based on inferred local sea-level fluctuations. We leverage this sequence stratigraphic framework to correlate the Florida Shell section with other studied sections in the Charlotte Harbor area. The development of this new site provides a workable basis for more detailed studies of the long-term paleoecological and paleoenvironmental evolution of southwestern Florida.more » « less
An official website of the United States government

