skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Community structure along the Western Antarctic continental shelf and a latitudinal change in epibenthic faunal abundance assessed by photographic surveys
The Southern Ocean’s continental shelf communities harbor high benthic biodiversity. However, most census methods have relied on trawling or dredging rather than direct observation. Benthic photographic and videographic transect surveys serve a key role in characterizing marine communities’ abundance and diversity, and they also provide information on the spatial arrangement of species within a community. To investigate diversity and abundance in Southern Ocean benthic communities, we employed photographic transects during cruises aboard the RVIB Nathanial B. Palmer (November 2012) and the ASRV Laurence M. Gould (February 2013). One kilometer long photographic transects were conducted at 8 sites along 6,000 km of Western Antarctica from the tip of the Antarctic Peninsula to the Ross Sea from which epifaunal echinoderms, tunicates, arthropods, cnidarians, poriferans, and annelids were identified and counted allowing estimations of biodiversity. Our results do not support a latitudinal trend in diversity, but rather a decrease in abundance of macrofaunal individuals at higher latitude sites. All communities sampled on the Western Antarctic shelf were primarily dominated by ophiuroids, pycnogonids, holothuroids, and demosponges. However, the most abundant taxon across all sites was Ophionotus victoriae , followed by the symbiotic partners Iophon sp. (demosponge) and Ophioplinthus spp. (ophiuroid). Data also confirm that the Southern Ocean is composed of discretely unique benthic communities. These results provide critical understanding of the current community structure and diversity serving as a baseline as the Antarctic continental shelf changes due to rising ocean temperatures, climate change, and collapse of large ice sheets.  more » « less
Award ID(s):
2225144 1916665
PAR ID:
10462251
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
10
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Antarctic benthos is rich in biodiversity, with many species being endemic to the Southern Ocean. Multiple factors such as oceanic currents, glacial cycles and reproductive life stages have been attributed to the distribution of benthic dwelling invertebrates around the continent. The sea spider (Pycnogonida) Nymphon australe is a paternal brooder, which lacks a pelagic planktonic life stage. Typically brooding is assumed to suggest limited dispersal capabilities. Here we investigated the genetic structure of N. australe, a highly abundant pycnogonid species in the Southern Ocean to test assumptions of a documented circumpolar distribution. Previous studies with mitochondrial data have revealed that N. australe has high genetic diversity, limited gene flow, as well as distinct geographic structure. To resolve the phylogeographic structure of the circumpolar N. australe from the Antarctic continental shelf, we used 3RAD single nucleotide polymorphism (SNP) data from 111 individuals sampled from ten different, circumpolar geographic regions including the Western Antarctic Peninsula, Ross Sea, Weddell Sea, and Eastern Antarctica. Analyses revealed populations to have distinct regional populations with strong geographic structuring observed by locality and suggest the possibility that N. australe may be a species complex in the Southern Ocean. 
    more » « less
  2. Bernstein, Hans C (Ed.)
    ABSTRACT The continental shelf of the Western Antarctic Peninsula (WAP) is a highly variable system characterized by strong cross-shelf gradients, rapid regional change, and large blooms of phytoplankton, notably diatoms. Rapid environmental changes coincide with shifts in plankton community composition and productivity, food web dynamics, and biogeochemistry. Despite the progress in identifying important environmental factors influencing plankton community composition in the WAP, the molecular basis for their survival in this oceanic region, as well as variations in species abundance, metabolism, and distribution, remains largely unresolved. Across a gradient of physicochemical parameters, we analyzed the metabolic profiles of phytoplankton as assessed through metatranscriptomic sequencing. Distinct phytoplankton communities and metabolisms closely mirrored the strong gradients in oceanographic parameters that existed from coastal to offshore regions. Diatoms were abundant in coastal, southern regions, where colder and fresher waters were conducive to a bloom of the centric diatom,Actinocyclus. Members of this genus invested heavily in growth and energy production; carbohydrate, amino acid, and nucleotide biosynthesis pathways; and coping with oxidative stress, resulting in uniquely expressed metabolic profiles compared to other diatoms. We observed strong molecular evidence for iron limitation in shelf and slope regions of the WAP, where diatoms in these regions employed iron-starvation induced proteins, a geranylgeranyl reductase, aquaporins, and urease, among other strategies, while limiting the use of iron-containing proteins. The metatranscriptomic survey performed here reveals functional differences in diatom communities and provides further insight into the environmental factors influencing the growth of diatoms and their predicted response to changes in ocean conditions. IMPORTANCEIn the Southern Ocean, phytoplankton must cope with harsh environmental conditions such as low light and growth-limiting concentrations of the micronutrient iron. Using metratranscriptomics, we assessed the influence of oceanographic variables on the diversity of the phytoplankton community composition and on the metabolic strategies of diatoms along the Western Antarctic Peninsula, a region undergoing rapid climate change. We found that cross-shelf differences in oceanographic parameters such as temperature and variable nutrient concentrations account for most of the differences in phytoplankton community composition and metabolism. We opportunistically characterized the metabolic underpinnings of a large bloom of the centric diatomActinocyclusin coastal waters of the WAP. Our results indicate that physicochemical differences from onshore to offshore are stronger than between southern and northern regions of the WAP; however, these trends could change in the future, resulting in poleward shifts in functional differences in diatom communities and phytoplankton blooms. 
    more » « less
  3. Summary Recent studies have focused on linking marine microbial communities with environmental factors, yet, relatively little is known about the drivers of microbial community patterns across the complex gradients from the nearshore to open ocean. Here, we examine microbial dynamics in 15 five‐station transects beginning at the estuarine Piver's Island Coastal Observatory (PICO) time‐series site and continuing 87 km across the continental shelf to the oligotrophic waters of the Sargasso Sea. 16S rRNA gene libraries reveal strong clustering by sampling site with distinct nearshore, continental shelf and offshore oceanic communities. Water temperature and distance from shore (which serves as a proxy for gradients in factors such as productivity, terrestrial input and nutrients) both most influence community composition. However, at the phylotype level, modelling shows the distribution of some taxa is linked to temperature, others to distance from shore and some by both factors, highlighting that taxa with distinct environmental preferences underlie apparent clustering by station. Thus, continental margins contain microbial communities that are distinct from those of either the nearshore or the offshore environments and contain mixtures of phylotypes with nearshore or offshore preferences rather than those unique to the shelf environment. 
    more » « less
  4. There are numerous reports of macroalgal abundance along the northern portion of the Western Antarctic Peninsula (WAP) but little information about short-term variation in macroalgal abundance or in community structure. Here, we video-recorded replicate vertical transects between 5 and 40 m at 4 sites separated by <30 km near Anvers Island in 2019 and 2023, with 2 of the sites also recorded in 2020. Total macroalgal cover increased between 2019 and 2023 in all individual transects sampled in both years, with substantial increases in perennial brown overstory macroalgal cover. Nonparametric multivariate analyses of the communities identified significant differences in the macroalgal assemblages among all sites, and between 2019 and 2023 at 3 of the sites, but there were no significant differences in the macroinvertebrate assemblages across sites or years. Combined percent cover and destructive biomass quadrat sampling of a limited number of quadrats enabled estimations of macroalgal biomass changes from the video data. Although the absolute magnitudes reported here should be treated as preliminary estimates, biomass increases between 2019 and 2023 were clearly substantial because they were primarily from increases in the large overstory brown macroalgae. Sea ice concentrations were decreasing substantially across this time interval and were likely a causal factor in the increased macroalgal cover and biomass. 
    more » « less
  5. Abstract BackgroundAntarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs. ResultsSoil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs. ConclusionsOverall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities. 
    more » « less