skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Implicit Memory Transformer for Computationally Efficient Simultaneous Speech Translation
Simultaneous speech translation is an essential communication task difficult for humans whereby a translation is generated concurrently with oncoming speech inputs. For such a streaming task, transformers using block processing to break an input sequence into segments have achieved state-of-the-art performance at a reduced cost. Current methods to allow information to propagate across segments, including left context and memory banks, have faltered as they are both insufficient representations and unnecessarily expensive to compute. In this paper, we propose an Implicit Memory Transformer that implicitly retains memory through a new left context method, removing the need to explicitly represent memory with memory banks. We generate the left context from the attention output of the previous segment and include it in the keys and values of the current segment’s attention calculation. Experiments on the MuST-C dataset show that the Implicit Memory Transformer provides a substantial speedup on the encoder forward pass with nearly identical translation quality when compared with the state-of-the-art approach that employs both left context and memory banks.  more » « less
Award ID(s):
2223483
PAR ID:
10462265
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Findings of the Association for Computational Linguistics
Volume:
2023
Page Range / eLocation ID:
12900 to 12907
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transformer models using segment-based processing have been an effective architecture for simultaneous speech translation. However, such models create a context mismatch between training and inference environments, hindering potential translation accuracy. We solve this issue by proposing Shiftable Context, a simple yet effective scheme to ensure that consistent segment and context sizes are maintained throughout training and inference, even with the presence of partially filled segments due to the streaming nature of simultaneous translation. Shiftable Context is also broadly applicable to segment-based transformers for streaming tasks. Our experiments on the English-German, English-French, and English-Spanish language pairs from the MUST-C dataset demonstrate that when applied to the Augmented Memory Transformer, a state-of-the-art model for simultaneous speech translation, the proposed scheme achieves an average increase of 2.09, 1.83, and 1.95 BLEU scores across each wait-k value for the three language pairs, respectively, with a minimal impact on computation-aware Average Lagging. 
    more » « less
  2. Transformer-based rankers have shown the state-of-the-art performance, but their self-attention operation is mostly unable to process long sequences. One of the common approaches to train these rankers is to heuristically select some segments of each document, such as the first segment, as training data. However, these segments may not contain the query-related parts of documents. To address this problem, we propose the query-driven segment selection from long documents to build training data for transformer-based rankers. The segment selector provides relevant samples with more accurate labels and non-relevant samples which are harder to be predicted. The experimental results show that the basic BERT-based ranker trained with the proposed segment selector significantly outperforms that trained by the heuristically selected segments, and performs equally to the state-of-the-art model with localized self-attention that can process longer input sequences. We also demonstrate that training with our segment selector, there is not much gain from feeding input sequences larger than 200 words. Our findings open up new opportunities to design efficient transformer-based rankers. 
    more » « less
  3. The prevalence of voice spoofing attacks in today’s digital world has become a critical security concern. Attackers employ various techniques, such as voice conversion (VC) and text-to-speech (TTS), to generate synthetic speech that imitates the victim’s voice and gain access to sensitive information. The recent advances in synthetic speech generation pose a significant threat to modern security systems, while traditional voice authentication methods are incapable of detecting them effectively. To address this issue, a novel solution for logical access (LA)-based synthetic speech detection is proposed in this paper. SpoTNet is an attention-based spoofing transformer network that includes crafted front-end spoofing features and deep attentive features retrieved using the developed logical spoofing transformer encoder (LSTE). The derived attentive features were then processed by the proposed multi-layer spoofing classifier to classify speech samples as bona fide or synthetic. In synthetic speeches produced by the TTS algorithm, the spectral characteristics of the synthetic speech are altered to match the target speaker’s formant frequencies, while in VC attacks, the temporal alignment of the speech segments is manipulated to preserve the target speaker’s prosodic features. By highlighting these observations, this paper targets the prosodic and phonetic-based crafted features, i.e., the Mel-spectrogram, spectral contrast, and spectral envelope, presenting an effective preprocessing pipeline proven to be effective in synthetic speech detection. The proposed solution achieved state-of-the-art performance against eight recent feature fusion methods with lower EER of 0.95% on the ASVspoof-LA dataset, demonstrating its potential to advance the field of speaker identification and improve speaker recognition systems. 
    more » « less
  4. Non-autoregressive automatic speech recognition (NASR) models have gained attention due to their parallelism and fast inference. The encoder-based NASR, e.g. connectionist temporal classification (CTC), can be initialized from the speech foundation models (SFM) but does not account for any dependencies among intermediate tokens. The encoder-decoder-based NASR, like CTC alignment-based single-step non-autoregressive transformer (CASS-NAT), can mitigate the dependency problem but is not able to efficiently integrate SFM. Inspired by the success of recent work of speech-text joint pre-training with a shared transformer encoder, we propose a new encoder-based NASR, UniEnc-CASSNAT, to combine the advantages of CTC and CASS-NAT. UniEnc-CASSNAT consists of only an encoder as the major module, which can be the SFM. The encoder plays the role of both the CASS-NAT encoder and decoder by two forward passes. The first pass of the encoder accepts the speech signal as input, while the concatenation of the speech signal and the token-level acoustic embedding is used as the input for the second pass. Examined on the Librispeech 100 h, MyST, and Aishell1 datasets, the proposed UniEnc-CASSNAT achieves state-of-the-art NASR results and is better or comparable to CASS-NAT with only an encoder and hence, fewer model parameters. 
    more » « less
  5. Abstract. We present 4Diff, a 3D-aware diffusion model addressing the exo-to-ego viewpoint translation task—generating first-person (egocentric) view images from the corresponding third-person (exocentric) images. Building on the diffusion model’s ability to generate photorealistic images, we propose a transformer-based diffusion model that incorporates geometry priors through two mechanisms: (i) egocentric point cloud rasterization and (ii) 3D-aware rotary cross-attention. Egocentric point cloud rasterization converts the input exocentric image into an egocentric layout, which is subsequently used by a diffusion image transformer. As a component of the diffusion transformer’s denoiser block, the 3D-aware rotary cross-attention further incorporates 3D information and semantic features from the source exocentric view. Our 4Diff achieves state-of-the-art results on the challenging and diverse Ego-Exo4D multiview dataset and exhibits robust generalization to novel environments not encountered during training. Our code, processed data, and pretrained models are publicly available at https://klauscc.github.io/4diff. 
    more » « less