Abstract Understanding the myriad avenues through which spatial and environmental factors shape evolution is a major focus in biological research. From a molecular perspective, much work has been focused on genomic sequence variation; however, recently there has been increased interest in how epigenetic variation may be shaped by different variables across the landscape. DNA methylation has been of particular interest given that it is dynamic and can alter gene expression, potentially offering a path for a rapid response to environmental change. We utilized whole genome enzymatic methyl sequencing to evaluate the distribution of CpG methylation across the genome and to analyze patterns of spatial and environmental association in the methylomes of two broadly distributed montane bumble bees (Bombus vancouverensis Cresson and Bombus vosnesenskii Radoszkowski) across elevational gradients in the western US. Methylation patterns in both species are similar at the genomic scale with ∼1% of CpGs being methylated and most methylation being found in exons. At the landscape scale, neither species exhibited strong spatial or population structuring in patterns of methylation, although some weak relationships between methylation and distance or environmental variables were detected. Differential methylation analysis suggests a stronger environment association in B. vancouverensis given the larger number of differentially methylated CpG's compared to B. vosnesenskii. We also observed only a handful of genes with both differentially methylated CpGs and previously detected environmentally associated outlier SNPs. Overall results reveal a weak but present pattern in variation in methylation over the landscape in both species.
more »
« less
Whole genome analyses reveal weak signatures of population structure and environmentally associated local adaptation in an important North American pollinator, the bumble bee Bombus vosnesenskii
Abstract Studies of species that experience environmental heterogeneity across their distributions have become an important tool for understanding mechanisms of adaptation and predicting responses to climate change. We examine population structure, demographic history and environmentally associated genomic variation in Bombus vosnesenskii , a common bumble bee in the western USA, using whole genome resequencing of populations distributed across a broad range of latitudes and elevations. We find that B. vosnesenskii exhibits minimal population structure and weak isolation by distance, confirming results from previous studies using other molecular marker types. Similarly, demographic analyses with Sequentially Markovian Coalescent models suggest that minimal population structure may have persisted since the last interglacial period, with genomes from different parts of the species range showing similar historical effective population size trajectories and relatively small fluctuations through time. Redundancy analysis revealed a small amount of genomic variation explained by bioclimatic variables. Environmental association analysis with latent factor mixed modelling (LFMM2) identified few outlier loci that were sparsely distributed throughout the genome and although a few putative signatures of selective sweeps were identified, none encompassed particularly large numbers of loci. Some outlier loci were in genes with known regulatory relationships, suggesting the possibility of weak selection, although compared with other species examined with similar approaches, evidence for extensive local adaptation signatures in the genome was relatively weak. Overall, results indicate B. vosnesenskii is an example of a generalist with a high degree of flexibility in its environmental requirements that may ultimately benefit the species under periods of climate change.
more »
« less
- Award ID(s):
- 1921585
- PAR ID:
- 10462267
- Date Published:
- Journal Name:
- Molecular Ecology
- ISSN:
- 0962-1083
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary In the hyperdiverse fungi, the process of speciation is virtually unknown, including for the > 20 000 species of ectomycorrhizal mutualists. To understand this process, we investigated patterns of genome‐wide differentiation in the ectomycorrhizal porcini mushroom, Boletus edulis , a globally distributed species complex with broad ecological amplitude. By whole‐genome sequencing 160 individuals from across the Northern Hemisphere, we genotyped 792 923 single nucleotide polymorphisms to characterize patterns of genome‐wide differentiation and to identify the adaptive processes shaping global population structure. We show that B. edulis exhibits contrasting patterns of genomic divergence between continents, with multiple lineages present across North America, while a single lineage dominates Europe. These geographical lineages are inferred to have diverged 1.62–2.66 million years ago, during a period of climatic upheaval and the onset of glaciation in the Pliocene–Pleistocene boundary. High levels of genomic differentiation were observed among lineages despite evidence of substantial and ongoing introgression. Genome scans, demographic inference, and ecological niche models suggest that genomic differentiation is maintained by environmental adaptation, not physical isolation. Our study uncovers striking patterns of genome‐wide differentiation on a global scale and emphasizes the importance of local adaptation and ecologically mediated divergence, rather than prezygotic barriers such as allopatry or genomic incompatibility, in fungal population differentiation.more » « less
-
Abstract Hybrid zones are important windows into the evolutionary dynamics of populations, revealing how processes like introgression and adaptation structure population genomic variation. Importantly, they are useful for understanding speciation and how species respond to their environments. Here, we investigate two closely related sea star species, Asterias rubens and A. forbesi , distributed along rocky European and North American coastlines of the North Atlantic, and use genome‐wide molecular markers to infer the distribution of genomic variation within and between species in this group. Using genomic data and environmental niche modelling, we document hybridization occurring between northern New England and the southern Canadian Maritimes. We investigate the factors that maintain this hybrid zone, as well as the environmental variables that putatively drive selection within and between species. We find that the two species differ in their environmental niche breadth; Asterias forbesi displays a relatively narrow environmental niche while conversely, A. rubens has a wider niche breadth. Species distribution models accurately predict hybrids to occur within environmental niche overlap, thereby suggesting environmental selection plays an important role in the maintenance of the hybrid zone. Our results imply that the distribution of genomic variation in North Atlantic sea stars is influenced by the environment, which will be crucial to consider as the climate changes.more » « less
-
Hines, Heather (Ed.)Abstract Biogeographic clines in morphology along environmental gradients can illuminate forces influencing trait evolution within and between species. Latitude has long been studied as a driver of morphological clines, with a focus on body size and temperature. However, counteracting environmental pressures may impose constraints on body size. In montane landscapes, declines in air density with elevation can negatively impact flight performance in volant species, which may contribute to selection for reduced body mass despite declining temperatures. We examine morphology in two bumble bee (Hymenoptera: Apidae: Bombus Latreille) species, Bombus vancouverensis Cresson and Bombus vosnesenskii Radoszkowski, across mountainous regions of California, Oregon, and Washington, United States. We incorporate population genomic data to investigate the relationship between genomic ancestry and morphological divergence. We find that B. vancouverensis, which tends to be more specialized for high elevations, exhibits stronger spatial-environmental variation, being smaller in the southern and higher elevation parts of its range and having reduced wing loading (mass relative to wing area) at high elevations. Bombus vosnesenskii, which is more of an elevational generalist, has substantial trait variation, but spatial-environmental correlations are weak. Population structure is stronger in the smaller B. vancouverensis, and we find a significant association between elevation and wing loading after accounting for genetic structure, suggesting the possibility of local adaptation for this flight performance trait. Our findings suggest that some conflicting results for body size trends may stem from distinct environmental pressures that impact different aspects of bumble bee ecology, and that different species show different morphological clines in the same region.more » « less
-
null (Ed.)The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata , to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reef restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species.more » « less
An official website of the United States government

