Studies assessing the predictability of evolution typically focus on short-term adaptation within populations or the repeatability of change among lineages. A missing consideration in speciation research is to determine whether natural selection predictably transforms standing genetic variation within populations into differences between species. Here, we test whether and how host-related selection on diapause timing associates with genome-wide differentiation during ecological speciation by comparing ancestral hawthorn and newly formed apple-infesting host races of Rhagoletis pomonella to their sibling species Rhagoletis mendax that attacks blueberries. The associations of 57 857 single nucleotide polymorphisms in a diapause genome-wide-association study (GWAS) on the hawthorn race strongly predicted the direction and magnitude of genomic divergence among the three fly populations at a field site in Fennville, MI, USA. The apple race and R. mendax show parallel changes in the frequencies of putative inversions on three chromosomes associated with the earlier fruiting times of apples and blueberries compared to hawthorns. A diapause GWAS on R. mendax revealed compensatory changes throughout the genome accounting for the earlier eclosion of blueberry, but not apple flies. Thus, a degree of predictability, although not complete, exists in the genomics of diapause across the ecological speciation continuum in Rhagoletis . The generality of this result is placed in the context of other similar systems. This article is part of the theme issue ‘Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
more »
« less
Contrasting continental patterns of adaptive population divergence in the holarctic ectomycorrhizal fungus Boletus edulis
Summary In the hyperdiverse fungi, the process of speciation is virtually unknown, including for the > 20 000 species of ectomycorrhizal mutualists. To understand this process, we investigated patterns of genome‐wide differentiation in the ectomycorrhizal porcini mushroom, Boletus edulis , a globally distributed species complex with broad ecological amplitude. By whole‐genome sequencing 160 individuals from across the Northern Hemisphere, we genotyped 792 923 single nucleotide polymorphisms to characterize patterns of genome‐wide differentiation and to identify the adaptive processes shaping global population structure. We show that B. edulis exhibits contrasting patterns of genomic divergence between continents, with multiple lineages present across North America, while a single lineage dominates Europe. These geographical lineages are inferred to have diverged 1.62–2.66 million years ago, during a period of climatic upheaval and the onset of glaciation in the Pliocene–Pleistocene boundary. High levels of genomic differentiation were observed among lineages despite evidence of substantial and ongoing introgression. Genome scans, demographic inference, and ecological niche models suggest that genomic differentiation is maintained by environmental adaptation, not physical isolation. Our study uncovers striking patterns of genome‐wide differentiation on a global scale and emphasizes the importance of local adaptation and ecologically mediated divergence, rather than prezygotic barriers such as allopatry or genomic incompatibility, in fungal population differentiation.
more »
« less
- Award ID(s):
- 2114785
- PAR ID:
- 10465837
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 237
- Issue:
- 1
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- 295 to 309
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The outcomes of speciation across organismal dimensions (e.g., ecological, genetic, phenotypic) are often assessed using phylogeographic methods. At one extreme, reproductively isolated lineages represent easily delimitable species differing in many or all dimensions, and at the other, geographically distinct genetic segments introgress across broad environmental gradients with limited phenotypic disparity. In the ambiguous gray zone of speciation, where lineages are genetically delimitable but still interacting ecologically, it is expected that these lineages represent species in the context of ontology and the evolutionary species concept when they are maintained over time with geographically well‐defined hybrid zones, particularly at the intersection of distinct environments. As a result, genetic structure is correlated with environmental differences and not space alone, and a subset of genes fail to introgress across these zones as underlying genomic differences accumulate. We present a set of tests that synthesize species delimitation with the speciation process. We can thereby assess historical demographics and diversification processes while understanding how lineages are maintained through space and time by exploring spatial and genome clines, genotype‐environment interactions, and genome scans for selected loci. Employing these tests in eight lineage‐pairs of snakes in North America, we show that six pairs represent 12 “good” species and that two pairs represent local adaptation and regional population structure. The distinct species pairs all have the signature of divergence before or near the mid‐Pleistocene, often with low migration, stable hybrid zones of varying size, and a subset of loci showing selection on alleles at the hybrid zone corresponding to transitions between distinct ecoregions. Locally adapted populations are younger, exhibit higher migration, and less ecological differentiation. Our results demonstrate that interacting lineages can be delimited using phylogeographic and population genetic methods that properly integrate spatial, temporal, and environmental data.more » « less
-
Abstract Sage-grouse are two closely related iconic species of the North American West, with historically broad distributions across sagebrush-steppe habitat. Both species are dietary specialists on sagebrush during winter, with presumed adaptations to tolerate the high concentrations of toxic secondary metabolites that function as plant chemical defenses. Marked range contraction and declining population sizes since European settlement have motivated efforts to identify distinct population genetic variation, particularly that which might be associated with local genetic adaptation and dietary specialization of sage-grouse. We assembled a reference genome and performed whole-genome sequencing across sage-grouse from six populations, encompassing both species and including several populations on the periphery of the species ranges. Population genomic analyses reaffirmed genome-wide differentiation between greater and Gunnison sage-grouse, revealed pronounced intraspecific population structure, and highlighted important differentiation of a small isolated population of greater sage-grouse in the northwest of the range. Patterns of genome-wide differentiation were largely consistent with a hypothesized role of genetic drift due to limited gene flow among populations. Inferred ancient population demography suggested persistent declines in effective population sizes that have likely contributed to differentiation within and among species. Several genomic regions with single-nucleotide polymorphisms exhibiting extreme population differentiation were associated with candidate genes linked to metabolism of xenobiotic compounds. In vitro activity of enzymes isolated from sage-grouse livers supported a role for these genes in detoxification of sagebrush, suggesting that the observed interpopulation variation may underlie important local dietary adaptations, warranting close consideration for conservation strategies that link sage-grouse to the chemistry of local sagebrush.more » « less
-
Abstract The study of local adaptation in the presence of ongoing gene flow is the study of natural selection in action, revealing the functional genetic diversity most relevant to contemporary pressures. In addition to individual genes, genome-wide architecture can itself evolve to enable adaptation. Distributed across a steep thermal gradient along the east coast of North America, Atlantic silversides (Menidia menidia) exhibit an extraordinary degree of local adaptation in a suite of traits, and the capacity for rapid adaptation from standing genetic variation, but we know little about the patterns of genomic variation across the species range that enable this remarkable adaptability. Here, we use low-coverage, whole-transcriptome sequencing of Atlantic silversides sampled along an environmental cline to show marked signatures of divergent selection across a gradient of neutral differentiation. Atlantic silversides sampled across 1371 km of the southern section of its distribution have very low genome-wide differentiation (median FST = 0.006 across 1.9 million variants), consistent with historical connectivity and observations of recent migrants. Yet almost 14,000 single nucleotide polymorphisms (SNPs) are nearly fixed (FST > 0.95) for alternate alleles. Highly differentiated SNPs cluster into four tight linkage disequilibrium (LD) blocks that span hundreds of genes and several megabases. Variants in these LD blocks are disproportionately nonsynonymous and concentrated in genes enriched for multiple functions related to known adaptations in silversides, including variation in lipid storage, metabolic rate, and spawning behavior. Elevated levels of absolute divergence and demographic modeling suggest selection maintaining divergence across these blocks under gene flow. These findings represent an extreme case of heterogeneity in levels of differentiation across the genome, and highlight how gene flow shapes genomic architecture in continuous populations. Locally adapted alleles may be common features of populations distributed along environmental gradients, and will likely be key to conserving variation to enable future responses to environmental change.more » « less
-
Abstract The North American racers (Coluber constrictor) are widely distributed across the Nearctic and numerous studies have demonstrated extensive variation in morphology, ecology, and population genetic structure. Here we take an integrative approach to understand lineage diversification within this taxon by combining genomic sequence capture data, mtDNA sequence data, morphometrics, and ecological niche models. Both the genomic data and mtDNA phylogeographic analyses support five lineages distributed across the range of this species. However, demographic model selection based on these two datasets strongly conflict in both the model of divergence and estimates of timing of lineage divergence. While mtDNA and concatenated genomic data suggest a Miocene origin of these distinct groups, coalescent-based demographic models with the sequence capture data suggest lineage diversification occurred at ~33 kya in allopatry without gene flow. Using linear morphological measurements of head shape we demonstrate that lineages distributed largely east and west of the Mississippi River are distinguishable. Furthermore, ecological niche models demonstrate that lineages distributed in subtropical habitats have environmental niche space that is significantly differentiated from lineages distributed across the continent. Taken together, these results suggest that ecology is an important axis of lineage divergence within this group and that more fine-scale analyses may find even greater differentiation between the populations identified here. This abstract translated to Spanish is avaliable in the Supporting Infromation section (Este resumen traducido al español está disponible en la sección, Supporting Infromation).more » « less