skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Wideband CPW-Fed Monopole Antenna for High-Temperature Applications
As the advancement of wireless devices and their applications progress, it is important to produce novel aspects of a usual design to expand their capabilities. One such application could be for extreme circumstances that would include high temperatures. In order to approach this issue, a new substrate has been proposed to implement high-temperature devices. Zirconia Ribbon Ceramic (ZRC) is made of YSZ with high temperature tolerance, smooth surface, moisture resistant, mechanically robust, and low thermal mass properties [1] . Recent publications has demonstrated the suitability of ZRC for implementing functional devices [ 1 –​3 ]. Due to this material’s durability and capability of resisting high temperatures, it provides a desirable opportunity of applying this material as a substrate for patch antenna applications. The application of this material, however, requires the understanding of its electrical properties and behavior. This proposed material has a high relative permittivity and a low loss tangent as compared to traditionally available substrates. The high dielectric constant of ZRC along with low loss characteristics allows for realizing efficient wireless systems with smaller form factor. In this study, a wideband patch antenna on ZRC substrate is proposed for high-temperature environments. The antenna operates within 1.89 GHz–3 GHz frequency range, and can be used for WLAN, ISM band, and S-band applications.  more » « less
Award ID(s):
2104513
PAR ID:
10462302
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2022 IEEE USNC-URSI Radio Science Meeting
Page Range / eLocation ID:
66 to 67
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, a Multi-Input Multi-Output (MIMO) antenna of 4 monopole elements is presented on Zirconia Ribbon Ceramic (ZRC) substrate. Utilization of this substrate material allows an implementation of an antenna system that is able to withstand harsh environments and high temperatures due to inherent substrate characteristics. The proposed MIMO design supports an operational antenna bandwidth from 2.44 GHz to 2.55 GHz with a center frequency around 2.5 GHz covered by all 4 antenna elements. High antenna isolation below -15 dB is obtained among the ports. The antenna also provides a peak gain over 3 dB through the entire band of interest (3.34 dB at 2.5 GHz) and low cross-polarization. 
    more » « less
  2. Zirconia Ribbon Ceramic (ZRC) is a commercially available ceramic that can be a potential low-loss substrate for radio frequency (RF) devices suitable for high temperatures and harsh environmental conditions. In this paper, the RF characteristics of ZRC are determined in the frequency band of 0.5 GHz to 5 GHz. A T-resonator is designed and fabricated for the transmission coefficient measurements to obtain complex permittivity (dielectric constant and loss tangent) values of the material. The dielectric constant is shown to be steady at 32.2, while the loss tangent is found to be at 0.001 in the band of interest. 
    more » « less
  3. Kakaraparty, Karthik; Mahbub, Ifana (Ed.)
    This paper presents design of a wearable flexible patch antenna and its corresponding SAR (specific absorption rate) analysis when placed on a human body. The substrate material used is polyimide with a thickness of 0.1 mm, and gold is used for the patch and ground material with 200 nm thickness. The di-electric constant and the tangent loss of the polyimide substrate are 3.5 and 0.0002, respectively. The dimensions of the proposed antenna are 30×30×0.1004 mm3. The designed antenna has the resonating frequency at 3.45 GHz and a bandwidth of 2.6 GHz. The far field gain of the designed antenna is 7.5 dBi. The SAR analysis generated an SAR value of 0.174 W/kg, which is within the safe limit of 2W/kg averaged over 10g of tissue as specified by the ICNIRP (International Commission of Non-Ionization Radiation Protection). This suggests that the designed antenna is safe and can be utilized for wireless wearable sensors. 
    more » « less
  4. This paper presents design of a wearable UWB (ultra-wide band) antenna and its corresponding SAR (specific absorption rate) analysis and power transfer capability estimation when it is placed on a human body. In this work, Polyimide with a thickness of 0.1 mm is used as the substrate material, and gold with a thickness of 200 nm is used for the patch and ground material. The dielectric constant and tangent loss of the polyimide substrate are 3.5 and 0.0002, respectively. The dimensions of the proposed antenna are 30×30×0.1004 mm3. The designed antenna has the resonating frequency at 3.11 GHz and a bandwidth of 3.06GHz. The near-field gain of the designed antenna is 6.43 dBi. The SAR analysis generated SAR values of 0.138 W/kg and 0.147 W/kg for antenna placed on flat body model and curved body model, respectively, which are within the safe limit of 2 W/kg averaged over 10g of tissue as specified by the ICNIRP (International Commission of Non-Ionization Radiation Protection). This indicates that the antenna is safe and suitable for use in wireless wearable sensors. 
    more » « less
  5. This paper presents the design of a compact 4 × 4 antenna array suitable for unmanned aerial vehicle-to-vehicle (V2V) communication applications. The proposed antenna array can offer a narrow beamwidth, high gain, wide beam steering capability and is highly compact. The substrate material used is Rogers 5880 with a thickness of 0.2 mm, and copper is used for the patch and ground material with 0.14 mm thickness. The di-electric constant and the tangent loss of the Rogers substrate are 2.2 and 0.0004, respectively. 45° phase shifters are incorporated in the feeding paths to facilitate the beamsteering. The dimensions of the proposed antenna array are 32 × 32 × 0.48 mm 3 . The designed antenna array has the resonating frequency at 24 GHz and has a bandwidth of 0.83 GHz (3.5% fractional bandwidth). The measured far field gain of the designed antenna array is 16.7 dBi. The beamwidth derived from the array’s far-field radiation pattern is 14.6°, and the maximum beam steering range of the array is 102° along the θ axis. 
    more » « less