skip to main content


Title: Integrating eco‐evolutionary dynamics and modern coexistence theory
Abstract Community ecology typically assumes that competitive exclusion and species coexistence are unaffected by evolution on the time scale of ecological dynamics. However, recent studies suggest that rapid evolution operating concurrently with competition may enable species coexistence. Such findings necessitate general theory that incorporates the coexistence contributions of eco‐evolutionary processes in parallel with purely ecological mechanisms and provides metrics for quantifying the role of evolution in shaping competitive outcomes in both modelling and empirical contexts. To foster the development of such theory, here we extend the interpretation of the two principal metrics of modern coexistence theory—niche and competitive ability differences—to systems where competitors evolve. We define eco‐evolutionary versions of these metrics by considering how invading and resident species adapt to conspecific and heterospecific competitors. We show that the eco‐evolutionary niche and competitive ability differences are sums of ecological and evolutionary processes, and that they accurately predict the potential for stable coexistence in previous theoretical studies of eco‐evolutionary dynamics. Finally, we show how this theory frames recent empirical assessments of rapid evolution effects on species coexistence, and how empirical work and theory on species coexistence and eco‐evolutionary dynamics can be further integrated.  more » « less
Award ID(s):
2022213
NSF-PAR ID:
10462353
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Ecology Letters
Volume:
25
Issue:
10
ISSN:
1461-023X
Page Range / eLocation ID:
2091 to 2106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The neutral theory of biodiversity explored the structure of a community of ecologically equivalent species. Such species are expected to display community drift dynamics analogous to neutral alleles undergoing genetic drift. While entire communities of species are not ecologically equivalent, recent field experiments have documented the existence of guilds of such neutral species embedded in real food webs.

    What demographic outcomes of the interactions within and between species in these guilds are expected to produce ecological drift versus coexistence remains unclear. To address this issue, and guide empirical testing, we consider models of a guild of ecologically equivalent competitors feeding on a single resource to explore when community drift should manifest.

    We show that community drift dynamics only emerge when the density‐dependent effects of each species on itself are identical to its density‐dependent effects on every other guild member. In contrast, if each guild member directly limits itself more than it limits the abundance of other guild members, all species in the guild are coexisting, even though they all are ecologically equivalent with respect to their interactions with species outside the guild (i.e. resources, predators, mutualists). Hence, considering only interspecific ecological differences generating density dependence, and not fully accounting for the preponderance of mechanisms causing intraspecific density dependence, will provide an incomplete picture for segregating between neutrality and coexistence. We also identify critical experiments necessary to disentangle guilds of ecologically equivalent species from those experiencing ecological drift, as well as provide an overview of ways of incorporating a mechanistic basis into studies of species coexistence and neutrality.

    Identifying these characteristics, and the mechanistic basis underlying community structure, is not merely an exercise in clarifying the semantics of coexistence and neutral theories, but rather reflects key differences that must exist among community members in order to determine how and why communities are structured.

     
    more » « less
  2. Beaulieu, Jeremy (Ed.)
    Abstract Due to their non-motile nature, plants rely heavily on mutualistic interactions to obtain resources and carry out services. One key mutualism is the plant–microbial mutualism in which a plant trades away carbon to a microbial partner for nutrients like nitrogen and phosphorous. Plants show much variation in the use of this partnership from the individual level to entire lineages depending upon ecological, evolutionary and environmental context. We sought to determine how this context dependency could result in the promotion, exclusion or coexistence of the microbial mutualism by asking if and when the partnership provided a competitive advantage to the plant. To that end, we created a 2 × 2 evolutionary game in which plants could either be a mutualist and pair with a microbe or be a non-mutualist and forgo the partnership. Our model includes both frequency dependence and density dependence, which gives us the eco-evolutionary dynamics of mutualism evolution. As in all models, mutualism only evolved if it could offer a competitive advantage and its net benefit was positive. However, surprisingly the model reveals the possibility of coexistence between mutualist and non-mutualist genotypes due to competition between mutualists over the microbially obtained nutrient. Specifically, frequency dependence of host strategies can make the microbial symbiont less beneficial if the microbially derived resources are shared, a phenomenon that increasingly reduces the frequency of mutualism as the density of competitors increases. In essence, ecological competition can act as a hindrance to mutualism evolution. We go on to discuss basic experiments that can be done to test and falsify our hypotheses. 
    more » « less
  3. Although both interspecific competition and coexistence mechanisms are central to ecological and evolutionary theory, past empirical studies have generally focused on simple (two‐species) communities over short time periods. Experimental tests of these species interactions are challenging in complex study systems. Moreover, several studies of ‘imperfect generalists’, consistent with Liem's Paradox, raise questions about the ability of evolved species differences to partition niche space effectively when resources vary considerably across the annual cycle. Here we used a recently developed theoretical framework to combine past research on population‐level processes with observational data on resource use to test for ongoing interspecific competition and understand the nature of resource overlap. We compared species diet overlaps and differences in several distinctive communities centred on a focal species, the American RedstartSetophaga ruticillareplicated both spatially and seasonally, in combination with documentation of population regulation to assess the ability of similar species to partition dietary niche space and limit interspecific competition. Our results document high dietary overlap in most of the communities studied, with only subtle differentiation consistent with known species differences in foraging behaviour and morphology. These findings are largely consistent with species foraging as imperfect generalists. However, in contrast to past studies, the high diet overlaps observed here during times of inferred resource scarcity were driven by low‐value prey taxa (e.g. small ants) and did not involve truly ‘private’ resources. All of these factors increase the potential negative impacts of interspecific competition, and limit the ability of these birds to avoid competition if food availability deteriorates further than observed in our study, either seasonally or at longer intervals.

     
    more » « less
  4. Abstract

    Intraspecific trait variation (ITV) is a widespread feature of life, but it is an open question how ITV affects between‐species coexistence. Recent theoretical studies have produced contradictory results, with ITV promoting coexistence in some models and undermining coexistence in others. Here we review recent work and propose a new conceptual framework to explain how ITV affects coexistence between two species. We propose that all traits belong to one of two categories: niche traits and hierarchical traits. Niche traits determine an individual's location on a niche axis or trade‐off axis, such that changing an individual's trait makes it perform better in some circumstances and worse in others. Hierarchical traits represent cases where conspecifics with different traits have the same niche, but one performs better under all circumstances, such that there are winners and losers. Our framework makes predictions for how intraspecific variation in each type of trait affects coexistence by altering stabilizing mechanisms and fitness differences. For example, ITV in niche traits generally weakens the stabilizing mechanism, except when it generates a generalist–specialist trade‐off. On the other hand, hierarchical traits tend to impact competitors differently, such that ITV in one species will strengthen the stabilizing mechanism while ITV in the other species will weaken the mechanism. We re‐examine 10 studies on ITV and coexistence, along with four novel models, and show that our framework can explain why ITV promotes coexistence in some models and undermines coexistence in others. Overall, our framework reconciles what were previously considered to be contrasting results and provides both theoretical and empirical directions to study the effect of ITV on species coexistence.

     
    more » « less
  5. Abstract

    Understanding the movement of species’ ranges is a classic ecological problem that takes on urgency in this era of global change. Historically treated as a purely ecological process, range expansion is now understood to involve eco‐evolutionary feedbacks due to spatial genetic structure that emerges as populations spread. We synthesize empirical and theoretical work on the eco‐evolutionary dynamics of range expansion, with emphasis on bridging directional, deterministic processes that favor evolved increases in dispersal and demographic traits with stochastic processes that lead to the random fixation of alleles and traits. We develop a framework for understanding the joint influence of these processes in changing the mean and variance of expansion speed and its underlying traits. Our synthesis of recent laboratory experiments supports the consistent role of evolution in accelerating expansion speed on average, and highlights unexpected diversity in how evolution can influence variability in speed: results not well predicted by current theory. We discuss and evaluate support for three classes of modifiers of eco‐evolutionary range dynamics (landscape context, trait genetics, and biotic interactions), identify emerging themes, and suggest new directions for future work in a field that stands to increase in relevance as populations move in response to global change.

     
    more » « less