skip to main content

This content will become publicly available on April 1, 2023

Title: When does mutualism offer a competitive advantage? A game-theoretic analysis of host–host competition in mutualism
Abstract Due to their non-motile nature, plants rely heavily on mutualistic interactions to obtain resources and carry out services. One key mutualism is the plant–microbial mutualism in which a plant trades away carbon to a microbial partner for nutrients like nitrogen and phosphorous. Plants show much variation in the use of this partnership from the individual level to entire lineages depending upon ecological, evolutionary and environmental context. We sought to determine how this context dependency could result in the promotion, exclusion or coexistence of the microbial mutualism by asking if and when the partnership provided a competitive advantage to the plant. To that end, we created a 2 × 2 evolutionary game in which plants could either be a mutualist and pair with a microbe or be a non-mutualist and forgo the partnership. Our model includes both frequency dependence and density dependence, which gives us the eco-evolutionary dynamics of mutualism evolution. As in all models, mutualism only evolved if it could offer a competitive advantage and its net benefit was positive. However, surprisingly the model reveals the possibility of coexistence between mutualist and non-mutualist genotypes due to competition between mutualists over the microbially obtained nutrient. Specifically, frequency dependence of host more » strategies can make the microbial symbiont less beneficial if the microbially derived resources are shared, a phenomenon that increasingly reduces the frequency of mutualism as the density of competitors increases. In essence, ecological competition can act as a hindrance to mutualism evolution. We go on to discuss basic experiments that can be done to test and falsify our hypotheses. « less
; ;
Beaulieu, Jeremy
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Glass, Jennifer B. (Ed.)
    ABSTRACT The environmental context of the nitrogen-fixing mutualism between leguminous plants and rhizobial bacteria varies over space and time. Variation in resource availability, population density, and composition likely affect the ecology and evolution of rhizobia and their symbiotic interactions with hosts. We examined how host genotype, nitrogen addition, rhizobial density, and community complexity affected selection on 68 rhizobial strains in the Sinorhizobium meliloti – Medicago truncatula mutualism. As expected, host genotype had a substantial effect on the size, number, and strain composition of root nodules (the symbiotic organ). The understudied environmental variable of rhizobial density had a stronger effect on nodule strain frequency than the addition of low nitrogen levels. Higher inoculum density resulted in a nodule community that was less diverse and more beneficial but only in the context of the more selective host genotype. Higher density resulted in more diverse and less beneficial nodule communities with the less selective host. Density effects on strain composition deserve additional scrutiny as they can create feedback between ecological and evolutionary processes. Finally, we found that relative strain rankings were stable across increasing community complexity (2, 3, 8, or 68 strains). This unexpected result suggests that higher-order interactions between strains are raremore »in the context of nodule formation and development. Our work highlights the importance of examining mechanisms of density-dependent strain fitness and developing theoretical predictions that incorporate density dependence. Furthermore, our results have translational relevance for overcoming establishment barriers in bioinoculants and motivating breeding programs that maintain beneficial plant-microbe interactions across diverse agroecological contexts. IMPORTANCE Legume crops establish beneficial associations with rhizobial bacteria that perform biological nitrogen fixation, providing nitrogen to plants without the economic and greenhouse gas emission costs of chemical nitrogen inputs. Here, we examine the influence of three environmental factors that vary in agricultural fields on strain relative fitness in nodules. In addition to manipulating nitrogen, we also use two biotic variables that have rarely been examined: the rhizobial community's density and complexity. Taken together, our results suggest that (i) breeding legume varieties that select beneficial strains despite environmental variation is possible, (ii) changes in rhizobial population densities that occur routinely in agricultural fields could drive evolutionary changes in rhizobial populations, and (iii) the lack of higher-order interactions between strains will allow the high-throughput assessments of rhizobia winners and losers during plant interactions.« less
  2. Gralnick, Jeffrey A. (Ed.)
    ABSTRACT Microalgal cultures are often maintained in xenic conditions, i.e., with associated bacteria, and many studies indicate that these communities both are complex and have significant impacts on the physiology of the target photoautotroph. Here, we investigated the structure and stability of microbiomes associated with a diverse sampling of diatoms during long-term maintenance in serial batch culture. We found that, counter to our initial expectation, evenness diversity increased with time since cultivation, driven by a decrease in dominance by the most abundant taxa in each culture. We also found that the site from which and time at which a culture was initially collected had a stronger impact on microbiome structure than the diatom species; however, some bacterial taxa were commonly present in most cultures despite having widely geographically separated collection sites. Our results support the conclusion that stochastic initial conditions (i.e., the local microbial community at the collection site) are important for the long-term structure of these microbiomes, but deterministic forces such as negative frequency dependence and natural selection exerted by the diatom are also at work. IMPORTANCE Natural microbial communities are extremely complex, with many more species coexisting in the same place than there are different resources to supportmore »them. Understanding the forces that allow this high level of diversity has been a central focus of ecological and evolutionary theory for many decades. Here, we used stock cultures of diatoms, which were maintained for years in continuous growth alongside populations of bacteria, as proxies for natural communities. We show that the bacterial communities remained relatively stable for years, and there is evidence that ecological forces worked to stabilize coexistence instead of favoring competition and exclusion. We also show evidence that, despite some important regional differences in bacterial communities, there was a globally present core microbiome potentially selected for in these diatom cultures. Understanding interactions between bacteria and diatoms is important both for basic ecological science and for practical science, such as industrial biofuel production.« less
  3. All organisms experience fundamental conflicts between divergent metabolic processes. In plants, a pivotal conflict occurs between allocation to growth, which accelerates resource acquisition, and to defense, which protects existing tissue against herbivory. Trade-offs between growth and defense traits are not universally observed, and a central prediction of plant evolutionary ecology is that context-dependence of these trade-offs contributes to the maintenance of intraspecific variation in defense [Züst and Agrawal,Annu. Rev. Plant Biol., 68, 513–534 (2017)]. This prediction has rarely been tested, however, and the evolutionary consequences of growth–defense trade-offs in different environments are poorly understood, especially in long-lived species [Cipolliniet al.,Annual Plant Reviews(Wiley, 2014), pp. 263–307]. Here we show that intraspecific trait trade-offs, even when fixed across divergent environments, interact with competition to drive natural selection of tree genotypes corresponding to their growth–defense phenotypes. Our results show that a functional trait trade-off, when coupled with environmental variation, causes real-time divergence in the genetic architecture of tree populations in an experimental setting. Specifically, competitive selection for faster growth resulted in dominance by fast-growing tree genotypes that were poorly defended against natural enemies. This outcome is a signature example of eco-evolutionary dynamics: Competitive interactions affected microevolutionary trajectories on a timescale relevant to subsequentmore »ecological interactions [Brunneret al.,Funct. Ecol.33, 7–12 (2019)]. Eco-evolutionary drivers of tree growth and defense are thus critical to stand-level trait variation, which structures communities and ecosystems over expansive spatiotemporal scales.

    « less
  4. Bacterial mutualists generate major fitness benefits for eukaryotes, reshaping the host phenotype and its interactions with the environment. Yet, microbial mutualist populations are predicted to generate mutants that defect from providing costly services to hosts while maintaining the capacity to exploit host resources. Here, we examined the mutualist service of symbiotic nitrogen fixation in a metapopulation of root-nodulating Bradyrhizobium spp . that associate with the native legume Acmispon strigosus . We quantified mutualism traits of 85 Bradyrhizobium isolates gathered from a 700 km transect in California spanning 10 sampled A. strigosus populations. We clonally inoculated each Bradyrhizobium isolate onto A. strigosus hosts and quantified nodulation capacity and net effects of infection, including host growth and isotopic nitrogen concentration. Six Bradyrhizobium isolates from five populations were categorized as ineffective because they formed nodules but did not enhance host growth via nitrogen fixation. Six additional isolates from three populations failed to form root nodules. Phylogenetic reconstruction inferred two types of mutualism breakdown, including three to four independent losses of effectiveness and five losses of nodulation capacity on A. strigosus . The evolutionary and genomic drivers of these mutualism breakdown events remain poorly understood.
  5. Abstract

    Although mutualisms are often studied as simple pairwise interactions, they typically involve complex networks of interacting species. How multiple mutualistic partners that provide the same service and compete for resources are maintained in mutualistic networks is an open question. We use a model bacterial community in which multiple ‘partner strains’ ofEscherichia colicompete for a carbon source and exchange resources with a ‘shared mutualist’ strain ofSalmonella enterica. In laboratory experiments, competingE. colistrains readily coexist in the presence ofS. enterica, despite differences in their competitive abilities. We use ecological modeling to demonstrate that a shared mutualist can create temporary resource niche partitioning by limiting growth rates, even if yield is set by a resource external to a mutualism. This mechanism can extend to maintain multiple competing partner species. Our results improve our understanding of complex mutualistic communities and aid efforts to design stable microbial communities.