skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effects of solution additives and gas‐phase modifiers on the molecular environment and conformational space of common heme proteins
RationaleThe molecular environment is known to impact the secondary and tertiary structures of biomolecules both in solution and in the gas phase, shifting the equilibrium between different conformational and oligomerization states. However, there is a lack of studies monitoring the impacts of solution additives and gas‐phase modifiers on biomolecules characterized using ion mobility techniques. MethodsThe effect of solution additives and gas‐phase modifiers on the molecular environment of two common heme proteins, bovine cytochrome c and equine myoglobin, is investigated as a function of the time after desolvation (e.g., 100–500 ms) using nanoelectrospray ionization coupled to trapped ion mobility spectrometry with detection by time‐of‐flight mass spectrometry. Organic compounds used as additives/modifiers (methanol, acetonitrile, acetone) were either added to the aqueous protein solution before ionization or added to the ion mobility bath gas by nebulization. ResultsChanges in the mobility profiles are observed depending on the starting solution composition (i.e., in aqueous solution at neutral pH or in the presence of organic content: methanol, acetone, or acetonitrile) and the protein. In the presence of gas‐phase modifiers (i.e., N2doped with methanol, acetone, or acetonitrile), a shift in the mobility profiles driven by the gas‐modifier mass and size and changes in the relative abundances and number of IMS bands are observed. ConclusionsWe attribute the observed changes in the mobility profiles in the presence of gas‐phase modifiers to a clustering/declustering mechanism by which organic molecules adsorb to the protein ion surface and lower energetic barriers for interconversion between conformational states, thus redefining the free energy landscape and equilibria between conformers. These structural biology experiments open new avenues for manipulation and interrogation of biomolecules in the gas phase with the potential to emulate a large suite of solution conditions, ultimately including conditions that more accurately reflect a variety of intracellular environments.  more » « less
Award ID(s):
1654274
PAR ID:
10462419
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Rapid Communications in Mass Spectrometry
Volume:
33
Issue:
5
ISSN:
0951-4198
Format(s):
Medium: X Size: p. 399-404
Size(s):
p. 399-404
Sponsoring Org:
National Science Foundation
More Like this
  1. Nicotinamide adenine dinucleotide (NAD) is found in all living cells where the oxidized (NAD + ) and reduced (NADH) forms play important roles in many enzymatic reactions. However, little is known about NAD + and NADH conformational changes and kinetics as a function of the cell environment. In the present work, an analytical workflow is utilized to study NAD + and NADH dynamics as a function of the organic content in solution using fluorescence lifetime spectroscopy and in the gas-phase using trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) and infrared multiple photon dissociation (IRMPD) spectroscopy. NAD solution time decay studies showed a two-component distribution, assigned to changes from a “close” to “open” conformation with the increase of the organic content. NAD gas-phase studies using nESI-TIMS-MS displayed two ion mobility bands for NAD + protonated and sodiated species, while four and two ion mobility bands were observed for NADH protonated and sodiated species, respectively. Changes in the mobility profiles were observed for NADH as a function of the starting solution conditions and the time after desolvation, while NAD + profiles showed no dependence. IRMPD spectroscopy of NAD + and NADH protonated species in the 800–1800 and 3200–3700 cm −1 spectral regions showed common and signature bands between the NAD forms. Candidate structures were proposed for NAD + and NADH kinetically trapped intermediates of the protonated and sodiated species, based on their collision cross sections and IR profiles. Results showed that NAD + and NADH species exist in open, stack, and closed conformations and that the driving force for conformational dynamics is hydrogen bonding of the N–H–O and O–H–O forms with ribose rings. 
    more » « less
  2. A combination of ion mobility/mass spectrometry, solution and gas phase crosslinking reactions, and solution and gas phase molecular modeling was used to determine solution and gas phase conformational preferences of the model IDP alpha synuclein. 
    more » « less
  3. RationaleTandem‐ion mobility spectrometry/mass spectrometry methods have recently gained traction for the structural characterization of proteins and protein complexes. However, ion activation techniques currently coupled with tandem‐ion mobility spectrometry/mass spectrometry methods are limited in their ability to characterize structures of proteins and protein complexes. MethodsHere, we describe the coupling of the separation capabilities of tandem‐trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS) with the dissociation capabilities of ultraviolet photodissociation (UVPD) for protein structure analysis. ResultsWe establish the feasibility of dissociating intact proteins by UV irradiation at 213 nm between the two TIMS devices in tTIMS/MS and at pressure conditions compatible with ion mobility spectrometry (2–3 mbar). We validate that the fragments produced by UVPD under these conditions result from a radical‐based mechanism in accordance with prior literature on UVPD. The data suggest stabilization of fragment ions produced from UVPD by collisional cooling due to the elevated pressures used here (“UVnoD2”), which otherwise do not survive to detection. The data account for a sequence coverage for the protein ubiquitin comparable to recent reports, demonstrating the analytical utility of our instrument in mobility‐separating fragment ions produced from UVPD. ConclusionsThe data demonstrate that UVPD carried out at elevated pressures of 2–3 mbar yields extensive fragment ions rich in information about the protein and that their exhaustive analysis requires IMS separation post‐UVPD. Therefore, because UVPD and tTIMS/MS each have been shown to be valuable techniques on their own merit in proteomics, our contribution here underscores the potential of combining tTIMS/MS with UVPD for structural proteomics. 
    more » « less
  4. RationaleFemtoamp and picoamp electrospray ionization (ESI) characteristics of a nonpolar solvent were explored. The direct ESI mass spectrometry analysis of chloroform extract solution enabled rapid analysis of perfluorinated sulfonic acid analytes in drinking water. MethodsNeat chloroform solvent and extracts were directly used in a typical wire‐in ESI setup using micrometer emitter tips. Ionization currents were measured with femtoamp sensitivity while ramping the spray voltage from 0 to −5000 V. Methanol was used as a comparison to illustrate the characteristics of electrospraying chloroform. The effects of spray voltage and inlet temperature were studied. A liquid–liquid extraction workflow was developed to analyze perfluorooctanoate sulfonate (PFOS) in drinking water using an ion‐trap mass spectrometer. ResultsThe ionization onset of chloroform solution was 41 ± 17 fA at 300 V. The ionization current gradually increased with voltage while remaining below 100 pA when using voltages up to −5000 V. The ion signal of PFOS was significantly enhanced to improve the limit of detection (LoD) to 25 ppt in chloroform. Coupled with a liquid–liquid extraction workflow, LoD of 0.38–5.1 ppt and a quantitation range of 5–400 ppt were achieved for perfluorinated sulfonic compounds in 1‐ml water samples. ConclusionsFemtoamp and picoamp modes expand the solvent compatibility range of ESI and can enable quantitative analysis in parts per trillion (ppt) concentrations. 
    more » « less
  5. The structural stability of biomolecules in the gas phase remains an important topic in mass spectrometry applications for structural biology. Here, we evaluate the kinetic stability of native-like protein ions using time-dependent, tandem ion mobility (IM). In these tandem IM experiments, ions of interest are mobility-selected after a first dimension of IM and trapped for up to ∼14 s. Time-dependent, collision cross section distributions are then determined from separations in a second dimension of IM. In these experiments, monomeric protein ions exhibited structural changes specific to both protein and charge state, whereas large protein complexes did not undergo resolvable structural changes on the timescales of these experiments. We also performed energy-dependent experiments, i.e., collision-induced unfolding, as a comparison for time-dependent experiments to understand the extent of unfolding. Collision cross section values observed in energy-dependent experiments using high collision energies were significantly larger than those observed in time-dependent experiments, indicating that the structures observed in time-dependent experiments remain kinetically trapped and retain some memory of their solution-phase structure. Although structural evolution should be considered for highly charged, monomeric protein ions, these experiments demonstrate that higher-mass protein ions can have remarkable kinetic stability in the gas phase. 
    more » « less