skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soil nitrogen fertilization reduces relative leaf nitrogen allocation to photosynthesis
Abstract The connection between soil nitrogen availability, leaf nitrogen, and photosynthetic capacity is not perfectly understood. Because these three components tend to be positively related over large spatial scales, some posit that soil nitrogen positively drives leaf nitrogen, which positively drives photosynthetic capacity. Alternatively, others posit that photosynthetic capacity is primarily driven by above-ground conditions. Here, we examined the physiological responses of a non-nitrogen-fixing plant (Gossypium hirsutum) and a nitrogen-fixing plant (Glycine max) in a fully factorial combination of light by soil nitrogen availability to help reconcile these competing hypotheses. Soil nitrogen stimulated leaf nitrogen in both species, but the relative proportion of leaf nitrogen used for photosynthetic processes was reduced under elevated soil nitrogen in all light availability treatments due to greater increases in leaf nitrogen content than chlorophyll and leaf biochemical process rates. Leaf nitrogen content and biochemical process rates in G. hirsutum were more responsive to changes in soil nitrogen than those in G. max, probably due to strong G. max investments in root nodulation under low soil nitrogen. Nonetheless, whole-plant growth was significantly enhanced by increased soil nitrogen in both species. Light availability consistently increased relative leaf nitrogen allocation to leaf photosynthesis and whole-plant growth, a pattern that was similar between species. These results suggest that the leaf nitrogen–photosynthesis relationship varies under different soil nitrogen levels and that these species preferentially allocated more nitrogen to plant growth and non-photosynthetic leaf processes, rather than photosynthesis, as soil nitrogen increased.  more » « less
Award ID(s):
2045968
PAR ID:
10462439
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Experimental Botany
Volume:
74
Issue:
17
ISSN:
0022-0957
Format(s):
Medium: X Size: p. 5166-5180
Size(s):
p. 5166-5180
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Interactions between carbon (C) and nitrogen (N) cycles in terrestrial ecosystems are simulated in advanced vegetation models, yet methodologies vary widely, leading to divergent simulations of past land C balance trends. This underscores the need to reassess our understanding of ecosystem processes, given recent theoretical advancements and empirical data. We review current knowledge, emphasising evidence from experiments and trait data compilations for vegetation responses to CO2and N input, alongside theoretical and ecological principles for modelling. N fertilisation increases leaf N content but inconsistently enhances leaf‐level photosynthetic capacity. Whole‐plant responses include increased leaf area and biomass, with reduced root allocation and increased aboveground biomass. Elevated atmospheric CO2also boosts leaf area and biomass but intensifies belowground allocation, depleting soil N and likely reducing N losses. Global leaf traits data confirm these findings, indicating that soil N availability influences leaf N content more than photosynthetic capacity. A demonstration model based on the functional balance hypothesis accurately predicts responses to N and CO2fertilisation on tissue allocation, growth and biomass, offering a path to reduce uncertainty in global C cycle projections. 
    more » « less
  2. Abstract Cyanobacteria are the only oxygenic photosynthetic organisms that can fix nitrogen. In diazotrophic cyanobacteria, the regulation of photosynthesis during the diurnal cycle is hypothesized to be linked with nitrogen fixation and involve the D1 protein isoform PsbA4. The amount of bioavailable nitrogen has a major impact on productivity in aqueous environments. In contrast to low- or nitrogen-fixing (−N) conditions, little data on photosynthetic regulation under nitrogen-replete (+ N) conditions are available. We compared the regulation of photosynthesis under −N and + N conditions during the diurnal cycle in wild type and apsbA4deletion strain of the unicellular diazotrophic cyanobacteriumCyanothecesp. ATCC 51142. We observed common changes to light harvesting and photosynthetic electron transport during the dark in + N and −N conditions and found that these modifications occur in both diazotrophic and non-diazotrophic cyanobacteria. Nitrogen availability increased PSII titer when cells transitioned from dark to light and promoted growth. Under −N conditions, deletion of PsbA4 modified charge recombination in dark and regulation of PSII titer during dark to light transition. We conclude that darkness impacts the acceptor-side modifications to PSII and photosynthetic electron transport in cyanobacteria independently of the nitrogen-fixing status and the presence of PsbA4. 
    more » « less
  3. Abstract Plants invest a considerable amount of leaf nitrogen in the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO), forming a strong coupling of nitrogen and photosynthetic capacity. Variability in the nitrogen-photosynthesis relationship indicates different nitrogen use strategies of plants (i.e., the fraction nitrogen allocated to RuBisCO; fLNR), however, the reason for this remains unclear as widely different nitrogen use strategies are adopted in photosynthesis models. Here, we use a comprehensive database of in situ observations, a remote sensing product of leaf chlorophyll and ancillary climate and soil data, to examine the global distribution in fLNR using a random forest model. We find global fLNR is 18.2 ± 6.2%, with its variation largely driven by negative dependence on leaf mass per area and positive dependence on leaf phosphorus. Some climate and soil factors (i.e., light, atmospheric dryness, soil pH, and sand) have considerable positive influences on fLNR regionally. This study provides insight into the nitrogen-photosynthesis relationship of plants globally and an improved understanding of the global distribution of photosynthetic potential. 
    more » « less
  4. Abstract A mechanistic understanding of plant photosynthetic response is needed to reliably predict changes in terrestrial carbon (C) gain under conditions of chronically elevated atmospheric nitrogen (N) deposition. Here, using 2,683 observations from 240 journal articles, we conducted a global meta‐analysis to reveal effects of N addition on 14 photosynthesis‐related traits and affecting moderators. We found that across 320 terrestrial plant species, leaf N was enhanced comparably on mass basis (Nmass, +18.4%) and area basis (Narea, +14.3%), with no changes in specific leaf area or leaf mass per area. Total leaf area (TLA) was increased significantly, as indicated by the increases in total leaf biomass (+46.5%), leaf area per plant (+29.7%), and leaf area index (LAI, +24.4%). To a lesser extent than for TLA, N addition significantly enhanced leaf photosynthetic rate per area (Aarea, +12.6%), stomatal conductance (gs, +7.5%), and transpiration rate (E, +10.5%). The responses ofAareawere positively related with that ofgs, with no changes in instantaneous water‐use efficiency and only slight increases in long‐term water‐use efficiency (+2.5%) inferred from13C composition. The responses of traits depended on biological, experimental, and environmental moderators. As experimental duration and N load increased, the responses of LAI andAareadiminished while that ofEincreased significantly. The observed patterns of increases in both TLA andEindicate that N deposition will increase the amount of water used by plants. Taken together, N deposition will enhance gross photosynthetic C gain of the terrestrial plants while increasing their water loss to the atmosphere, but the effects on C gain might diminish over time and that on plant water use would be amplified if N deposition persists. 
    more » « less
  5. Abstract Few previous studies have described the patterns of leaf characteristics in response to nutrient availability and depth in the crown. Sugar maple has been studied for both sensitivity to light, as a shade-tolerant species, and sensitivity to soil nutrient availability, as a species in decline due to acid rain. To explore leaf characteristics from the top to bottom of the canopy, we collected leaves along a vertical gradient within mature sugar maple crowns in a full-factorial nitrogen (N) by phosphorus (P) addition experiment in three forest stands in central New Hampshire, USA. Thirty-two of the 44 leaf characteristics had significant relationships with depth in the crown, with the effect of depth in the crown strongest for leaf area, photosynthetic pigments and polyamines. Nitrogen addition had a strong impact on the concentration of foliar N, chlorophyll, carotenoids, alanine and glutamate. For several other elements and amino acids, N addition changed patterns with depth in the crown. Phosphorus addition increased foliar P and boron (B); it also caused a steeper increase of P and B with depth in the crown. Since most of these leaf characteristics play a direct or indirect role in photosynthesis, metabolic regulation or cell division, studies that ignore the vertical gradient may not accurately represent whole-canopy performance. 
    more » « less