skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Composite Structures with Emissive Quantum Dots for Light Enhancement
Abstract Since their inception, quantum dots have proven to be advantageous for light management applications due to their high brightness and well‐controlled absorption, scattering, and emission properties. As quantum dots become commercially available at large scale, the need for robust, stable, and flexible optical components continues to drive the development of robust and flexible quantum dot composite materials. In this review, after a thorough introduction to quantum dots, discussion delves into methods for fabricating quantum dot loaded composite optical elements such as thin films, microfabricated patterns, and microstructures. The importance of surface chemistry and ligand engineering, host matrixes, wet processing, and unique patterning methodologies is presented by considering photostability, aggregation, and phase separation of quantum dots in corresponding composites. With regard to prospective optical applications of quantum dot materials, emphasis is placed on light emitting and guiding composite materials for lasing applications, specifically whispering gallery mode‐based photonic microsystems. These developments will enable novel flexible, portable, and miniaturized optoelectronic devices such as light‐emitting diodes, flexible pixelated displays, solar cells, large‐area microwaveguides, omnidirectional micromirrors, optical metasurfaces, and directional microlasers.  more » « less
Award ID(s):
1803495
PAR ID:
10462470
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
7
Issue:
4
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Both organohalide perovskites and colloidal quantum dots are attractive and promising materials for optoelectronic applications. Recent experiments have combined the two to create “quantum dot-in-perovskite” assemblies for highly efficient light emissions. In this work, we unravel photoexcitation dynamics at the interface between the perovskite and the quantum dot by means of first-principle non-adiabatic molecular dynamics simulations. We find that such assemblies adopt the type-I band structure and are free of defect states. The interfacial and the electronic structure are robust against the thermal fluctuations at 300K. The lowest excitation is predicted to be localized entirely on the quantum dot and the photoexcited charge transfer takes place in a picosecond timescale. The charge transfer dynamics of the photoexcited electron and hole exhibits a moderate asymmetry, which can be attributed to the differences in electronic coupling between the donor and the acceptor and the electron-phonon coupling. The ultrafast and balanced charge transfer dynamics endows the ‘dot-in-a-crystal’ devices with unprecedented performance, which could lead to important applications in photovoltaics, photocatalysis, and infrared light emissions. 
    more » « less
  2. Abstract Widespread clinical adoption of photodynamic therapy (PDT) and photobiomodulation (PBM) has been limited due to the lack of a suitable commercial light source. Cost-effective quantum dot light-emitting diodes (QLEDs) promise to be an ideal light source nicely fitting into this niche, not only complying with desired form factors—flexibility, lightweight, and uniform large area illumination—but with narrow emission spectrum and high power density at clinically relevant deep red wavelengths. This paper is intended to provide a review on the development of QLEDs as a photomedical light source, specifically, for PDT and PBM. First, we introduce the potential of QLEDs as light sources in the photomedical field, briefly describe the mechanisms and benefits of both PDT and PBM phototherapies, and present the unique features of flexible QLEDs (FQLEDs) over conventional and commercial light sources. Then, the pioneering work and state-of-the-art research using QLEDs and organic light emitting diodes (OLEDs) for photomedicine are presented. The performance of QLEDs/OLEDs used in photomedical studies and latest progress on QLEDs are also summarized. Ultimately, we discuss the materials and design strategies for fabrication of efficient and stable FQLEDs, and present the basic requirements for near future introduction of FQLEDs into the healthcare and photomedicine markets. This review is expected to be comprehensive and useful to the scientific community interested in developing lightweight and flexible light sources for photomedicine and/or exploring novel applications for OLED/QLED based lighting devices. 
    more » « less
  3. Light emitting diodes (LEDs) have wide applications from fullcolor displays to solid‐state lighting. Numerous types of luminescent materials have been explored for LEDs, ranging from inorganic semiconductors to metal complexes and quantum dots. Despite the rapid pace of development, LEDs have not achieved their full potentials in terms of performance and cost efficiency. Identifying new eco‐friendly materials for LEDs is of great interest. Recently, metal halide perovskites and perovskite‐related hybrid materials have emerged as new generation luminescent materials with unique optoelectronic properties. Here, some of our recent development of LEDs based on metal halide perovskites and perovskite‐related materials will be discussed. 
    more » « less
  4. Colloidal quantum dots are a promising candidate material for solar energy generation because of their band gap tunability and solution-based processing flexibility. However, conventional colloidal quantum dot solar cell fabrication techniques are still limited by their lack of scalability, environment conditions, and difficult installation scenarios. Here, we develop spray-casting manufacturing methods for fabricating thin film solar cells, discuss the trade-off between conductivity and transmittance in transparent contact materials, and demonstrate the feasibility of spray-casting colloidal quantum dot layers. This work on flexible manufacturing methods paves the way for installing solar energy devices in a variety of novel scenarios. 
    more » « less
  5. Abstract The tuneability and control of quantum nanostructures in two-dimensional materials offer promising perspectives for their use in future electronics. It is hence necessary to analyze quantum transport in such nanostructures. Material properties such as a complex dispersion, topology, and charge carriers with multiple degrees of freedom, are appealing for novel device functionalities but complicate their theoretical description. Here, we study quantum tunnelling transport across a few-electron bilayer graphene quantum dot. We demonstrate how to uniquely identify single- and two-electron dot states’ orbital, spin, and valley composition from differential conductance in a finite magnetic field. Furthermore, we show that the transport features manifest splittings in the dot’s spin and valley multiplets induced by interactions and magnetic field (the latter splittings being a consequence of bilayer graphene’s Berry curvature). Our results elucidate spin- and valley-dependent tunnelling mechanisms and will help to utilize bilayer graphene quantum dots, e.g., as spin and valley qubits. 
    more » « less