Bone is primarily composed of collagen and apatite, two materials which exhibit a high sensitivity to pH dysregulation. As a result, acid exposure of bone, both clinically and in the laboratory is expected to cause compositional and mechanical changes to the tissue. Clinically, Metabolic acidosis (MA), a condition characterized by a reduced physiological pH, has been shown to have negative implications on bone health, including a decrease in bone mineral density and volume as well as increased fracture risk. The addition of bone-like apatite to ionic solutions such as phosphate buffered saline (PBS) and media has been shown to acidify the solution leading to bone acid exposure. Therefore, is it essential to understand how reduced pH physiochemically affects bone composition and in turn its mechanical properties. This study investigates the specific changes in bone due to physiochemical dissolution in acid. Excised murine bones were placed in PBS solutions at different pHs: a homeostatic pH level (pH 7.4), an acidosis equivalent (pH 7.0), and an extreme acidic solution (pH 5.5). After 5 days, the bones were removed from the solutions and characterized to determine compositional and material changes. We found that bones, without cells, were able to regulate pH via buffering, leading to a decrease in bone mineral content and an increase in collagen denaturation. Both of these compositional changes contributed to an increase in bone toughness by creating a more ductile bone surface and preventing crack propagation. Therefore, we conclude that the skeletal systems' physiochemical response to acid exposure includes multifaceted and spatially variable compositional changes that affect bone mechanics.
more »
« less
Effect of stress on the dissolution/crystallization of apatite in aqueous solution: a thermochemical equilibrium study
Bone mineralization is critical to maintaining tissue mechanical function. The application of mechanical stress via exercise promotes bone mineralization via cellular mechanotransduction and increased fluid transport through the collagen matrix. However, due to its complex composition and ability to exchange ions with the surrounding body fluids, bone mineral composition and crystallization is also expected to respond to stress. Here, a combination of data from materials simulations, namely density functional theory and molecular dynamics, and experimental studies were input into an equilibrium thermodynamic model of bone apatite under stress in an aqueous solution based on the theory of thermochemical equilibrium of stressed solids. The model indicated that increasing uniaxial stress induced mineral crystallization. This was accompanied by a decrease in calcium and carbonate integration into the apatite solid. These results suggest that weight-bearing exercises can increase tissue mineralization via interactions between bone mineral and body fluid independent of cell and matrix behaviours, thus providing another mechanism by which exercise can improve bone health. This article is part of a discussion meeting issue ‘Supercomputing simulations of advanced materials’.
more »
« less
- Award ID(s):
- 2044870
- PAR ID:
- 10462570
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 381
- Issue:
- 2250
- ISSN:
- 1364-503X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Inspired by the mineralization process of bone, we have investigated mineralization on piezoelectric samples immersed in a solution with mineral ions. We have utilized polyvinylidene fluoride as a piezoelectric material and 10× simulated body fluid as a mineral solution. Three synthetic material systems were developed and characterized using scanning electron microscopy, X-ray diffraction, nanoindentation, and scratch testing. With these techniques, we provide insights into how the characteristics of the mineralization protocol affect the microstructure, chemical composition, crystal structure, and mechanical properties of the minerals. Increasing the solution temperature from 25°C to 50°C resulted in a greater packing density, roughly 10 times the stiffness and 4 times the fracture toughness. Collagen surface treatment resulted in roughly 7 times the stiffness along with potential anisotropy in the fracture toughness. Lastly, calcium phosphate minerals appear to pack in low-density and high-density phases on the piezoelectric scaffolds.more » « less
-
Trabecular bone is composed of organized mineralized collagen fibrils, which results in heterogeneous and anisotropic mechanical properties at the tissue level. Recently, biomechanical models computing stresses and strains in trabecular bone have indicated a significant effect of tissue heterogeneity on predicted stresses and strains. How-ever, the effect of the tissue-level mechanical anisotropy on the trabecular bone biomechanical response is unknown. Here, a computational method was established to automatically impose physiologically relevant orientation inherent in trabecular bone tissue on a trabecular bone microscale finite element model. Spatially varying tissue-level anisotropic elastic properties were then applied according to the bone mineral density and the local tissue orientation. The model was used to test the hypothesis that anisotropy in both homogeneous and heterogeneous models alters the predicted distribution of stress invariants. Linear elastic finite element computations were performed on a 3 mm cube model isolated from a microcomputed tomography scan of human trabecular bone from the distal femur. Hydrostatic stress and von Mises equivalent stress were recorded at every element, and the distributions of these values were analyzed. Anisotropy reduced the range of hydrostatic stress in both tension and compression more strongly than the associated increase in von Mises equivalent stress. The effect of anisotropy was independent of the spatial redistribution high compressive stresses due to tissue elastic heterogeneity. Tissue anisotropy and heterogeneity are likely important mechanisms to protect bone from failure and should be included for stress analyses in trabecular bone.more » « less
-
Abstract Integration of native bone into orthopedic devices is a key factor in long‐term implant success. The material‐tissue interface is generally accepted to consist of a hydroxyapatite layer so bioactive materials that can spontaneously generate this hydroxyapatite layer after implantation may improve patient outcomes. Per the ISO 22317:2014 standard, “Implants for surgery – In vitro evaluation for apatite‐forming ability of implant materials,” bioactivity performance statements can be assessed by soaking the material in simulated body fluid (SBF) and evaluating the surface for the formation of a hydroxyapatite layer; however, variations in test methods may alter hydroxyapatite formation and result in false‐positive assessments. The goal of this study was to identify the effect of SBF formulation on bioactivity assessment. Bioglass® (45S5 and S53P4) and non‐bioactive Ti‐6Al‐4V were exposed to SBF formulations varying in calcium ion and phosphate concentrations as well as supporting ion concentrations. Scanning electron microscopy and X‐ray powder diffraction evaluation of the resulting hydroxyapatite layers revealed that SBF enriched with double or quadruple the calcium and phosphate ion concentrations increased hydroxyapatite crystal size and quantity compared to the standard formulation and can induce hydroxyapatite crystallization on surfaces traditionally considered non‐bioactive. Altering concentrations of other ions, for example, bicarbonate, changed hydroxyapatite induction time, quantity, and morphology. For studies evaluating the apatite‐forming ability of a material to support bioactivity performance statements, test method parameters must be adequately described and controlled. It is unclear if apatite formation after exposure to any of the SBF formulations is representative of an in vivo biological response. The ISO 23317 standard test method should be further developed to provide additional guidance on apatite characterization and interpretation of the results.more » « less
-
Abstract Characterization of bone quality during the healing process is crucial for successful implantation procedures and patient comfort. In this study, a bone implant specimen that underwent a 4-week healing period was investigated. Bimodal atomic force microscopy (AFM) was employed to simultaneously obtain the morphology and elastic modulus maps of the newly formed and pre-existing bone regions within the sample. Results indicate that the new bone matrix possessed lower mineralization levels and presented larger, uneven mineral grains, exhibiting the attributes of a woven bone. On the other hand, the old bone matrix exhibited a more uniform and mineralized structure, which is characteristic of lamellar bones. The new bone had a lower overall elastic modulus than the old bone. Bimodal AFM further confirmed that the new bone displayed three regions comprising unmineralized, partially mineralized, and fully matured sections, which indicate a turbulent change in its composition. Meanwhile, the old bone exhibited two sections comprising partially mineralized and matured bone parts, which denote the final phase of mineralization. This study provides valuable insights into the morphological and nanomechanical differences between the old and new bone matrixes and presents a novel approach to investigate bone quality at different phases of the bone-healing process.more » « less
An official website of the United States government

