skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Managing multi‐species plant invasions when interactions influence their impact
Invasions by multiple non‐native plant species are common, but management programs often prioritize control of individual species that are expected to have the highest impacts. Multi‐species invasions could have larger or smaller impacts than single‐species invasions depending on how multiple co‐occurring invaders interact to alter their abundance or per capita impacts. Synergistic interactions, such as facilitation, may lead to greater combined impacts. However, if management focuses on a single invader, suppressive interactions could produce unintended consequences, such as the release of a co‐occurring invader with a stronger impact. The mechanisms described here highlight where better evidence is needed to predict the combined impacts of co‐occurring invaders and which mitigation strategies are most effective. Focused research is required to provide such evidence, which can aid managers in prioritizing which plant invaders to target and in determining the best sequence of invader removal – one that minimizes detrimental impacts on communities and ecosystems.  more » « less
Award ID(s):
2044006
PAR ID:
10462660
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Ecology and the Environment
ISSN:
1540-9295
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Positive interactions can drive the assembly of desert plant communities, but we know little about the species-specificity of positive associations between native shrubs and invasive annual species along aridity gradients. These measures are essential for explaining, predicting, and managing community-level responses to plant invasions and environmental change. Here, we measured the intensity of spatial associations among native shrubs and the annual plant community—including multiple invasive species and their native neighbors—along an aridity gradient across the Mojave and San Joaquin Deserts, United States. Along the gradient, we sampled the abundance and species richness of invasive and native annual species using 180 pairs of shrub and open microsites. Across the gradient, the invasive annuals Bromus madritensis ssp. rubens ( B. rubens ), B. tectorum , B. diandrus, Hordeum murinum , and Brassica tournefortii were consistently more abundant under shrubs than away from shrubs, suggesting positive effects of shrubs on these species. In contrast, abundance of the invasive annual Schismus spp. was greater away from shrubs than under shrubs, suggesting negative effects of shrubs on this species. Similarly, native annual abundance (pooled) and native species richness were greater away from shrubs than under shrubs. Shrub-annual associations were not influenced by shrub size or aridity. Interestingly, we found correlative evidence that B. rubens reduced native abundance (pooled), native species richness, and exotic abundance (pooled) under, but not away from shrubs. We conclude that native shrubs have considerable potential to directly (by increasing invader abundance) and indirectly (by increasing negative impacts of invaders on neighbors) facilitate plant invasions along broad environmental gradients, but these effects may depend more upon invader identity than environmental severity. 
    more » « less
  2. Abstract Much uncertainty remains about traits linked with successful invasion – the establishment and spread of non‐resident species into existing communities. Using a 20‐year experiment, where 50 non‐resident (but mostly native) grassland plant species were sown into savannah plots, we ask how traits linked with invasion depend on invasion stage (establishment, spread), indicator of invasion success (occupancy, relative abundance), time, environmental conditions, propagule rain, and traits of invaders and invaded communities. Trait data for 164 taxa showed that invader occupancy was primarily associated with traits of invaders, traits of recipient communities, and invader‐community interactions. Invader abundance was more strongly associated with community traits (e.g. proportion legume) and trait differences between invaders and the most similar resident species. Annuals and invaders with high‐specific leaf area were only successful early in stand development, whereas invaders with conservative carbon capture strategies persisted long‐term. Our results indicate that invasion is context‐dependent and long‐term experiments are required to comprehensively understand invasions. 
    more » « less
  3. Invasive plants often use mutualisms to establish in their new habitats and tend to be visited by resident pollinators similarly or more frequently than native plants. The quality and resulting reproductive success of those visits, however, have rarely been studied in a network context. Here, we use a dynamic model to evaluate the invasion success and impacts on natives of various types of non‐native plant species introduced into thousands of plant–pollinator networks of varying structure. We found that network structure properties did not predict invasion success, but non‐native traits and interactions did. Specifically, non‐native plants producing high amounts of floral rewards but visited by few pollinators at the moment of their introduction were the only plant species able to invade the networks. This result is determined by the transient dynamics occurring right after the plant introduction. Successful invasions increased the abundance of pollinators that visited the invader, but the reallocation of the pollinators' foraging effort from native plants to the invader reduced the quantity and quality of visits received by native plants and made the networks slightly more modular and nested. The positive and negative effects of the invader on pollinator and plant abundance, respectively, were buffered by plant richness. Our results call for evaluating the impact of invasive plants not only on visitation rates and network structure, but also on processes beyond pollination including seed production and recruitment of native plants. 
    more » « less
  4. Exotic invasive plant species alter ecosystems and locally extirpate native plant species, and by doing so alter community structure. Changes in community structure may be particularly important if invaders promote species with certain traits. For example, the positive effects of most invaders on soil fertility may promote species with weedy traits, whether native or not. We examined the effects of two co-occurring Prosopis congeners, the native P. cineraria and the exotic invader P. juliflora, on species identified as “agricultural weeds” and species that were not agricultural weeds in the United Arab Emirates. When compared to plots in the open, P. cineraria canopies were associated with lower richness and density of non-weeds while having no impact on agricultural weed species. In contrast, there was lower richness and densities of non-weeds under canopies of P. juliflora, but higher densities of agricultural weeds than in the open surrounding the canopies. These patterns associated with Prosopis congeners and understory plant community composition might be due to the much higher litter deposition, if litter is inhibitory, and shallow root biomass under P. juliflora, or the different soil properties that corresponded with the two Prosopis canopies. In general, soils contained more nitrogen under P. juliflora than P. cineraria, and both understories were more fertile than soil in the open. Our results suggest that evolutionary history may play a role in how exotic invasive species may select for some traits over others in plant communities, with an exotic invader potentially creating reservoirs of agricultural weeds. 
    more » « less
  5. Garnas, Jeff R. (Ed.)
    Abstract Some introduced species cause severe damage, although the majority have little impact. Robust predictions of which species are most likely to cause substantial impacts could focus efforts to mitigate those impacts or prevent certain invasions entirely. Introduced herbivorous insects can reduce crop yield, fundamentally alter natural and managed forest ecosystems, and are unique among invasive species in that they require certain host plants to succeed. Recent studies have demonstrated that understanding the evolutionary history of introduced herbivores and their host plants can provide robust predictions of impact. Specifically, divergence times between hosts in the native and introduced ranges of a nonnative insect can be used to predict the potential impact of the insect should it establish in a novel ecosystem. However, divergence time estimates vary among published phylogenetic datasets, making it crucial to understand if and how the choice of phylogeny affects prediction of impact. Here, we tested the robustness of impact prediction to variation in host phylogeny by using insects that feed on conifers and predicting the likelihood of high impact using four different published phylogenies. Our analyses ranked 62 insects that are not established in North America and 47 North American conifer species according to overall risk and vulnerability, respectively. We found that results were robust to the choice of phylogeny. Although published vascular plant phylogenies continue to be refined, our analysis indicates that those differences are not substantial enough to alter the predictions of invader impact. Our results can assist in focusing biosecurity programs for conifer pests and can be more generally applied to nonnative insects and their potential hosts by prioritizing surveillance for those insects most likely to be damaging invaders. 
    more » « less