skip to main content


Title: Secure and Reliable Network Updates
Software-defined wide area networking (SD-WAN) enables dynamic network policy control over a large distributed network via network updates . To be practical, network updates must be consistent (i.e., free of transient errors caused by updates to multiple switches), secure (i.e., only be executed when sent from valid controllers), and reliable (i.e., function despite the presence of faulty or malicious members in the control plane), while imposing only minimal overhead on controllers and switches. We present SERENE: a protocol for se cure and re liable ne twork updates for SD-WAN environments. In short: Consistency is provided through the combination of an update scheduler and a distributed transactional protocol. Security is preserved by authenticating network events and updates, the latter with an adaptive threshold cryptographic scheme. Reliability is provided by replicating the control plane and making it resilient to a dynamic adversary by using a distributed ledger as a controller failure detector. We ensure practicality by providing a mechanism for scalability through the definition of independent network domains and exploiting the parallelism of network updates both within and across domains. We formally define SERENE’s protocol and prove its safety with regards to event-linearizability. Extensive experiments show that SERENE imposes minimal switch burden and scales to large networks running multiple network applications all requiring concurrent network updates, imposing at worst a 16% overhead on short-lived flow completion and negligible overhead on anticipated normal workloads.  more » « less
Award ID(s):
2124431
NSF-PAR ID:
10462756
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Privacy and Security
Volume:
26
Issue:
1
ISSN:
2471-2566
Page Range / eLocation ID:
1 to 41
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Previous studies have observed that TCP pacing evenly spacing out packets-minimizes traffic burstiness, reduces packet losses, and increases throughput. However, the main drawback of pacing is that the number of flows and the bottleneck link capacity must be known in advance. With this information, pacing is achieved by manually tuning sender nodes to send at rates that aggregate to the bottleneck capacity. This paper proposes a scheme based on programmable switches by which rates are dynamically adjusted. These switches store the network's state in the data plane and notify sender nodes to update their pacing rates when the network's state changes, e.g., a new flow joins or leaves the network. The scheme uses a custom protocol that is encapsulated inside the IP Options header field and thus is compatible with legacy switches (i.e., the scheme does not require all switches to be programmable). Furthermore, the processing overhead at programmable switches is minimal, as custom packets are only generated when a flow joins or leaves the network. Simulation results conducted in Mininet demonstrate that the proposed scheme is capable of dynamically notifying hosts to adapt the pacing rate with a minimum delay, increasing throughput, mitigating the TCP sawtooth behavior, and achieving better fairness among concurrent flows. The proposed scheme and preliminary results are particularly attractive to applications such as Science DMZ, where typically a small number of large flows must share the bandwidth capacity. 
    more » « less
  2. Distributed denial of service (DDoS) attacks have been prevalent on the Internet for decades. Albeit various defenses, they keep growing in size, frequency, and duration. The new network paradigm, Software-defined networking (SDN), is also vulnerable to DDoS attacks. SDN uses logically centralized control, bringing the advantages in maintaining a global network view and simplifying programmability. When attacks happen, the control path between the switches and their associated controllers may become congested due to their limited capacity. However, the data plane visibility of SDN provides new opportunities to defend against DDoS attacks in the cloud computing environment. To this end, we conduct measurements to evaluate the throughput of the software control agents on some of the hardware switches when they are under attacks. Then, we design a new mechanism, calledScotch, to enable the network to scale up its capability and handle the DDoS attack traffic. In our design, the congestion works as an indicator to trigger the mitigation mechanism.Scotchelastically scales up the control plane capacity by using an Open vSwitch-based overlay.Scotchtakes advantage of both the high control plane capacity of a large number of vSwitches and the high data plane capacity of commodity physical switches to increase the SDN network scalability and resiliency under abnormal (e.g., DDoS attacks) traffic surges. We have implemented a prototype and experimentally evaluatedScotch. Our experiments in the small-scale lab environment and large-scale GENI testbed demonstrate thatScotchcan elastically scale up the control channel bandwidth upon attacks.

     
    more » « less
  3. Programming Protocol-independent Packet Processors (P4) is an open-source domain-specific language to aid the data plane devices in programming packet forwarding. It has a variety of constructs optimized for this purpose. With P4, one can program ASICs, PISA chips, FPGAs, and many network devices since the language constructs allow true independence in some aspects that OpenFlow could not support. However, there are some challenges facing this technology. The first challenge is that P4 does not account for malicious traffic detection in the data plane pipeline. 2. The controllers have no secure medium of attack signature exchange. This ongoing work presents a multichain solution for detecting malicious traffic and exchanging attack signatures among controllers. This architecture uses an Artificial Immune System (AIS) based Intrusion Detection System (IDS), which runs on a distributed blockchain network, to introspect the P4 data plane to analyze and detect anomaly traffic flows. This IDS resides on the SideChain smart contracts and constantly monitors the traffic flow at the data planes based on introspection. Once malicious traffic is detected on any SideChain, the signatures are extracted and passed through the signature forwarding node to the MainChain for real-time storage. The malicious signatures are sent to all controllers via the mainchain network. We minimize the congestion the solution can cause to the P4 network by utilizing a load balancer to serve the SideChain. To evaluate the performance, we evaluate the False Positive Rate (FPR), Detection Rate (DR), and Accuracy (ACC) of the IDS. We also compute the execution time, performance overhead, and scalability of the proposed solution. 
    more » « less
  4. The shared nature of the wireless medium induces contention between data transport and backward signaling, such as acknowledgement. The current way of TCP acknowledgment induces control overhead which is counter-productive for TCP performance especially in wireless local area network (WLAN) scenarios.In this paper, we present a new acknowledgement called TACK ("Tame ACK"), as well as its TCP implementation TCP-TACK. TCP-TACK works on top of commodity WLAN, delivering high wireless transport goodput with minimal control overhead in the form of ACKs, without any hardware modification. To minimize ACK frequency, TACK abandons the legacy received-packet-driven ACK. Instead, it balances byte-counting ACK and periodic ACK so as to achieve a controlled ACK frequency. Evaluation results show that TCP-TACK achieves significant advantages over legacy TCP in WLAN scenarios due to less contention between data packets and ACKs. Specifically, TCP-TACK reduces over 90% of ACKs and also obtains an improvement of ~ 28% on good-put. We further find it performs equally well as high-speed TCP variants in wide area network (WAN) scenarios, this is attributed to the advancements of the TACK-based protocol design in loss recovery, round-trip timing, and send rate control. 
    more » « less
  5. Cryptocurrency software implements the cryptocurrency operations, including the distributed consensus protocol and the peer-to-peer networking. We design a software assurance scheme for cryptocurrency and advance the cryptocurrency handshaking protocol. Since we focus on Bitcoin (the most popular cryptocurrency) for implementation and integration, we call our scheme Version++, built on and advancing the current Bitcoin handshaking protocol based on the Version message. Our Version++ protocol providing software assurance is distinguishable from the previous research because it is permissionless, distributed, and lightweight to fit its cryptocurrency application. Our scheme is permissionless since it does not require a centralized trusted authority (unlike the remote software attestation techniques from trusted computing); it is distributed since the peer checks the software assurances of its own peer connections; and it is designed for efficiency/lightweight due to the dynamic nature of the peer connections and the large-scale broadcasting in cryptocurrency networking. Utilizing Merkle Tree for the efficiency of the proof verification, we implement and test Version++ on Bitcoin software and conduct experiments in an active Bitcoin node prototype connected to the Bitcoin Mainnet. Our prototype-based performance analyses demonstrate the lightweight design of Version++. The peer-specific verification grows logarithmically with the number of software files in processing time and in storage. In addition, the Version++ verification overhead is small compared to the overall handshaking process; our measured overhead of 2.22% with minimal networking latency between the virtual machines provides an upper bound in the real-world networking with greater handshaking duration, i.e., the relative Version++ overhead in the real world with physically separate machines will be smaller. 
    more » « less