skip to main content


Title: Using stereo XPTV to determine cylindrical particle distribution and velocity in a binary fluidized bed

Nonspherical particles are commonly found when processing biomass or municipal solid waste. In this study, cylindrical particles are used as generic nonspherical particles and are co‐fluidized with small spherical particles. X‐ray particle tracking velocimetry is used to track the three‐dimensional particle position and velocity of a single tagged cylindrical particle over a long time period in the binary fluidized bed. The effects of superficial gas velocity (uf), cylindrical particle mass fraction (α), particle sphericity (Φ), and bed material size on the cylindrical tracer particle location and velocity are investigated. Overall, the cylindrical particles are found in the near‐wall region more often than in the bed center region. Increasing the superficial gas velocityufprovide a slight improvement in the uniformity of the vertical and horizontal distributions. Increasing the cylindrical particle mass fractionαcauses the bed mixing conditions to transition from complete mixing into partial mixing. © 2018 American Institute of Chemical EngineersAIChE J, 65: 520–535, 2019

 
more » « less
NSF-PAR ID:
10462782
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
65
Issue:
2
ISSN:
0001-1541
Page Range / eLocation ID:
p. 520-535
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution functionf0(r,p) at cylindrical radiusrfrom the jet axis (assumed to lie along thez-axis) is given by convolving the particle momentum spectrumf0(,p)with the Green’s functionG(r,p;p), which describes the monoenergetic spectrum solution in whichf0δ(pp)asr→ ∞ . Previous work by Webb et al. studied only the Green’s function solution forG(r,p;p). In this paper, we explore for the first time, solutions for more general and realistic forms forf0(,p). The flow velocityu=u(r)ezis along the axis of the jet (thez-axis).uis independent ofz, andu(r) is a monotonic decreasing function ofr. The scattering timeτ(r,p)=τ0(p/p0)αin the shear flow region 0 <r<r2, andτ(r,p)=τ0(p/p0)α(r/r2)s, wheres> 0 in the regionr>r2is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r,p) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distributionψp(r,p;p)that particles observed at (r,p) originated fromr→ ∞ with momentump. The acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described.

     
    more » « less
  2. Abstract Background

    In a recent study, we reported beam quality correction factors,fQ, in carbon ion beams using Monte Carlo (MC) methods for a cylindrical and a parallel‐plate ionization chamber (IC). A non‐negligible perturbation effect was observed; however, the magnitude of the perturbation correction due to the specific IC subcomponents was not included. Furthermore, the stopping power data presented in the International Commission on Radiation Units and Measurements (ICRU) report 73 were used, whereas the latest stopping power data have been reported in the ICRU report 90.

    Purpose

    The aim of this study was to extend our previous work by computingfQcorrection factors using the ICRU 90 stopping power data and by reporting IC‐specific perturbation correction factors. Possible energy or linear energy transfer (LET) dependence of thefQcorrection factor was investigated by simulating both pristine beams and spread‐out Bragg peaks (SOBPs).

    Methods

    The TOol for PArticle Simulation (TOPAS)/GEANT4 MC code was used in this study. A 30 × 30 × 50 cm3water phantom was simulated with a uniform 10 × 10 cm2parallel beam incident on the surface. A Farmer‐type cylindrical IC (Exradin A12) and two parallel‐plate ICs (Exradin P11 and A11) were simulated in TOPAS using the manufacturer‐provided geometrical drawings. ThefQcorrection factor was calculated in pristine carbon ion beams in the 150–450 MeV/u energy range at 2 cm depth and in the middle of the flat region of four SOBPs. ThekQcorrection factor was calculated by simulating thefQocorrection factor in a60Co beam at 5 cm depth. The perturbation correction factors due to the presence of the individual IC subcomponents, such as the displacement effect in the air cavity, collecting electrode, chamber wall, and chamber stem, were calculated at 2 cm depth for monoenergetic beams only. Additionally, the mean dose‐averaged and track‐averaged LET was calculated at the depths at which thefQwas calculated.

    Results

    The ICRU 90fQcorrection factors were reported. Thepdiscorrection factor was found to be significant for the cylindrical IC with magnitudes up to 1.70%. The individual perturbation corrections for the parallel‐plate ICs were <1.0% except for the A11pcelcorrection at the lowest energy. ThefQcorrection for the P11 IC exhibited an energy dependence of >1.00% and displayed differences up to 0.87% between pristine beams and SOBPs. Conversely, thefQfor A11 and A12 displayed a minimal energy dependence of <0.50%. The energy dependence was found to manifest in the LET dependence for the P11 IC. A statistically significant LET dependence was found only for the P11 IC in pristine beams only with a magnitude of <1.10%.

    Conclusions

    The perturbation andkQcorrection factor should be calculated for the specific IC to be used in carbon ion beam reference dosimetry as a function of beam quality.

     
    more » « less
  3. Abstract. Biogenic organic precursors play an important role inatmospheric new particle formation (NPF). One of the major precursor speciesis α-pinene, which upon oxidation can form a suite of productscovering a wide range of volatilities. Highly oxygenated organic molecules(HOMs) comprise a fraction of the oxidation products formed. While it isknown that HOMs contribute to secondary organic aerosol (SOA) formation,including NPF, they have not been well studied in newly formed particles dueto their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures(−50 and −30 ∘C) and relativehumidities (20 % and 60 %) relevant in the upper free troposphere. Themeasurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD)chamber. The particle chemical composition was analyzed by a thermaldesorption differential mobility analyzer (TD-DMA) coupled to a nitratechemical ionization–atmospheric pressure interface–time-of-flight(CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Ourmeasurements revealed the presence of C8−10 monomers and C18−20dimers as the major compounds in the particles (diameter up to∼ 100 nm). Particularly, for the system with isoprene added,C5 (C5H10O5−7) and C15 compounds(C15H24O5−10) were detected. This observation is consistentwith the previously observed formation of such compounds in the gas phase. However, although the C5 and C15 compounds do not easily nucleate,our measurements indicate that they can still contribute to the particlegrowth at free tropospheric conditions. For the experiments reported here,most likely isoprene oxidation products enhance the growth of particleslarger than 15 nm. Additionally, we report on the nucleation rates measuredat 1.7 nm (J1.7 nm) and compared with previous studies, we found lowerJ1.7 nm values, very likely due to the higher α-pinene andozone mixing ratios used in the present study. 
    more » « less
  4. Abstract

    We  present the demography of the dynamics and gas mass fraction of 33 extremely metal-poor galaxies (EMPGs) with metallicities of 0.015–0.195Zand low stellar masses of 104–108Min the local universe. We conduct deep optical integral field spectroscopy (IFS) for the low-mass EMPGs with the medium-high resolution (R= 7500) grism of the 8 m Subaru FOCAS IFU instrument by the EMPRESS 3D survey, and investigate the Hαemission of the EMPGs. Exploiting the resolution high enough for the low-mass galaxies, we derive gas dynamics with the Hαlines by the fitting of three-dimensional disk models. We obtain an average maximum rotation velocity (vrot) of 15 ± 3 km s−1and an average intrinsic velocity dispersion (σ0) of 27 ± 10 km s−1for 15 spatially resolved EMPGs out of 33 EMPGs, and find that all 15 EMPGs havevrot/σ0< 1 suggesting dispersion-dominated systems. There is a clear decreasing trend ofvrot/σ0with the decreasing stellar mass and metallicity. We derive the gas mass fraction (fgas) for all 33 EMPGs, and find no clear dependence on stellar mass and metallicity. Thesevrot/σ0andfgastrends should be compared with young high-zgalaxies observed by the forthcoming JWST IFS programs to understand the physical origins of the EMPGs in the local universe.

     
    more » « less
  5. Abstract

    We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are9.35.4+4.6and4.22.0+1.9Mpc2(Kkms1)1, respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength (U¯). Among them,U¯, ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity,U¯, and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relationsαCO(21)Σ0.5andαCO(10)Σ0.2. The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors.

     
    more » « less