skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Inhibition of Dopamine Neurons Prevents Incentive Value Encoding of a Reward Cue: With Revelations from Deep Phenotyping

The survival of an organism is dependent on its ability to respond to cues in the environment. Such cues can attain control over behavior as a function of the value ascribed to them. Some individuals have an inherent tendency to attribute reward-paired cues with incentive motivational value, or incentive salience. For these individuals, termed sign-trackers, a discrete cue that precedes reward delivery becomes attractive and desirable in its own right. Prior work suggests that the behavior of sign-trackers is dopamine-dependent, and cue-elicited dopamine in the NAc is believed to encode the incentive value of reward cues. Here we exploited the temporal resolution of optogenetics to determine whether selective inhibition of ventral tegmental area (VTA) dopamine neurons during cue presentation attenuates the propensity to sign-track. Using male tyrosine hydroxylase(TH)-CreLong Evans rats, it was found that, under baseline conditions, ∼84% ofTH-Crerats tend to sign-track. Laser-induced inhibition of VTA dopamine neurons during cue presentation prevented the development of sign-tracking behavior, without affecting goal-tracking behavior. When laser inhibition was terminated, these same rats developed a sign-tracking response. Video analysis using DeepLabCutTMrevealed that, relative to rats that received laser inhibition, rats in the control group spent more time near the location of the reward cue even when it was not present and were more likely to orient toward and approach the cue during its presentation. These findings demonstrate that cue-elicited dopamine release is critical for the attribution of incentive salience to reward cues.

SIGNIFICANCE STATEMENTActivity of dopamine neurons in the ventral tegmental area (VTA) during cue presentation is necessary for the development of a sign-tracking, but not a goal-tracking, conditioned response in a Pavlovian task. We capitalized on the temporal precision of optogenetics to pair cue presentation with inhibition of VTA dopamine neurons. A detailed behavioral analysis with DeepLabCutTMrevealed that cue-directed behaviors do not emerge without dopamine neuron activity in the VTA. Importantly, however, when optogenetic inhibition is lifted, cue-directed behaviors increase, and a sign-tracking response develops. These findings confirm the necessity of dopamine neuron activity in the VTA during cue presentation to encode the incentive value of reward cues.

 
more » « less
PAR ID:
10462791
Author(s) / Creator(s):
; ; ; ; ;  ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.1523
Date Published:
Journal Name:
The Journal of Neuroscience
Volume:
43
Issue:
44
ISSN:
0270-6474
Format(s):
Medium: X Size: p. 7376-7392
Size(s):
p. 7376-7392
Sponsoring Org:
National Science Foundation
More Like this
  1. Dopamine release in the nucleus accumbens core (NAcC) is generally considered to be a proxy for phasic firing of the ventral tegmental area dopamine (VTADA) neurons. Thus, dopamine release in NAcC is hypothesized to reflect a unitary role in reward prediction error signaling. However, recent studies reveal more diverse roles of dopamine neurons, which support an emerging idea that dopamine regulates learning differently in distinct circuits. To understand whether the NAcC might regulate a unique component of learning, we recorded dopamine release in NAcC while male rats performed a backward conditioning task where a reward is followed by a neutral cue. We used this task because we can delineate different components of learning, which include sensory-specific inhibitory and general excitatory components. Furthermore, we have shown that VTADAneurons are necessary for both the specific and general components of backward associations. Here, we found that dopamine release in NAcC increased to the reward across learning while reducing to the cue that followed as it became more expected. This mirrors the dopamine prediction error signal seen during forward conditioning and cannot be accounted for temporal-difference reinforcement learning. Subsequent tests allowed us to dissociate these learning components and revealed that dopamine release in NAcC reflects the general excitatory component of backward associations, but not their sensory-specific component. These results emphasize the importance of examining distinct functions of different dopamine projections in reinforcement learning.

     
    more » « less
  2. Abstract

    Dopamine neurons in the ventral tegmental area support intracranial self-stimulation (ICSS), yet the cognitive representations underlying this phenomenon remain unclear. Here, 20-Hz stimulation of dopamine neurons, which approximates a physiologically relevant prediction error, was not sufficient to support ICSS beyond a continuously reinforced schedule and did not endow cues with a general or specific value. However, 50-Hz stimulation of dopamine neurons was sufficient to drive robust ICSS and was represented as a specific reward to motivate behavior. The frequency dependence of this effect is due to the rate (not the number) of action potentials produced by dopamine neurons, which differently modulates dopamine release downstream.

     
    more » « less
  3. The estrous cycle is a potent modulator of neuron physiology. In rodents,in vivoventral tegmental area (VTA) dopamine (DA) activity has been shown to fluctuate across the estrous cycle. Although the behavioral effect of fluctuating sex steroids on the reward circuit is well studied in response to drugs of abuse, few studies have focused on the molecular adaptations in the context of stress and motivated social behaviors. We hypothesized that estradiol fluctuations across the estrous cycle acts on the dopaminergic activity of the VTA to alter excitability and stress response. We used whole-cell slice electrophysiology of VTA DA neurons in naturally cycling, adult female C57BL/6J mice to characterize the effects of the estrous cycle and the role of 17β-estradiol on neuronal activity. We show that the estrous phase alters the effect of 17β-estradiol on excitability in the VTA. Behaviorally, the estrous phase during a series of acute variable social stressors modulates subsequent reward-related behaviors. Pharmacological inhibition of estrogen receptors in the VTA before stress during diestrus mimics the stress susceptibility found during estrus, whereas increased potassium channel activity in the VTA before stress reverses stress susceptibility found during estrus as assessed by social interaction behavior. This study identifies one possible potassium channel mechanism underlying the increased DA activity during estrus and reveals estrogen-dependent changes in neuronal function. Our findings demonstrate that the estrous cycle and estrogen signaling changes the physiology of DA neurons resulting in behavioral differences when the reward circuit is challenged with stress.

    SIGNIFICANCE STATEMENTThe activity of the ventral tegmental area encodes signals of stress and reward. Dopaminergic activity has been found to be regulated by both local synaptic inputs as well as inputs from other brain regions. Here, we provide evidence that cycling sex steroids also play a role in modulating stress sensitivity of dopaminergic reward behavior. Specifically, we reveal a correlation of ionic activity with estrous phase, which influences the behavioral response to stress. These findings shed new light on how estrous cycle may influence dopaminergic activity primarily during times of stress perturbation.

     
    more » « less
  4. Abstract

    Neurons in the lateral hypothalamic area that express hypocretin (Hcrt) neuropeptides help regulate many behaviors including wakefulness and reward seeking. These neurons project throughout the brain, including to neural populations that regulate wakefulness, such as the locus coeruleus (LC) and tuberomammilary nucleus (TMN), as well as to populations that regulate reward, such as the nucleus accumbens (NAc) and ventral tegmental area (VTA). To address the roles of Hcrt neurons in seemingly disparate behaviors, it has been proposed that Hcrt neurons can be anatomically subdivided into at least two distinct subpopulations: a “medial group” that projects to the LC and TMN, and a “lateral group” that projects to the NAc and VTA. Here, we use a dual retrograde tracer strategy to test the hypotheses that Hcrt neurons can be classified based on their downstream projections and medial/lateral location within the hypothalamus. We found that individual Hcrt neurons were significantly more likely to project to both the LC and TMN or to both the VTA and NAc than would be predicted by chance. In contrast, we found that Hcrt neurons that projected to the LC or TMN were mostly distinct from Hcrt neurons that projected to the VTA or NAc. Interestingly, these two populations of Hcrt neurons are intermingled within the hypothalamus and cannot be classified into medial or lateral groups. These results suggest that Hcrt neurons can be distinguished based on their downstream projections but are intermingled within the hypothalamus.

     
    more » « less
  5. Humans and other animals make decisions under uncertainty. Choosing an option that provides information can improve decision making. However, subjects often choose information that does not increase the chances of obtaining reward. In a procedure that promotes such paradoxical choice, animals choose between two alternatives: The richer option is followed by a cue that is rewarded 50% of the time (No-info) and the leaner option is followed by one of two cues, one always rewarded (100%), and the other never rewarded, 0% (Info). Since decisions involve comparing the subjective value of options after integrating all their features perhaps including information value, preference for information may rely on cortico-amygdalar circuitry. To test this, male and female Long-Evans rats were prepared with bilateral inhibitory DREADDs in the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), basolateral amygdala (BLA), or null virus infusions as a control. Using a counterbalanced design, we inhibited these regions after stable preference was acquired and during learning of new Info and No-info cues. We found that inhibition of ACC, but not OFC or BLA, selectively destabilized choice preference in female rats without affecting latency to choose or the response rate to cues. A logistic regression fit revealed that the previous choice strongly predicted preference in control animals, but not in female rats following ACC inhibition. BLA inhibition tended to decrease the learning of new cues that signaled the Info option, but had no effect on preference. The results reveal a causal, sex-dependent role for ACC in decisions involving information. 
    more » « less