skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changes in monthly baseflow across the U.S. Midwest
Abstract Characterizing streamflow changes in the agricultural U.S. Midwest is critical for effective planning and management of water resources throughout the region. The objective of this study is to determine if and how baseflow has responded to land alteration and climate changes across the study area during the 50‐year study period by exploring hydrologic variations based on long‐term stream gage data. This study evaluates monthly contributions to annual baseflow along with possible trends over the 1966–2016 period for 458 U.S. Geological Survey streamflow gages within 12 different Midwestern states. It also examines the influence of climate and land use factors on the observed baseflow trends. Monthly contribution breakdowns demonstrate how the majority of baseflow is discharged into streams during the spring months (March, April, and May) and is overall more substantial throughout the spring (especially in April) and summer (June, July, and August). Baseflow has not remained constant over the study period, and the results of the trend detection from the Mann–Kendall test reveal that baseflows have increased and are the strongest from May to September. This analysis is confirmed by quantile regression, which suggests that for most of the year, the largest changes are detected in the central part of the distribution. Although increasing baseflow trends are widespread throughout the region, decreasing trends are few and limited to Kansas and Nebraska. Further analysis reveals that baseflow changes are being driven by both climate and land use change across the region. Increasing trends in baseflow are linked to increases in precipitation throughout the year and are most prominent during May and June. Changes in agricultural intensity (in terms of harvested corn and soybean acreage) are linked to increasing trends in the central and western Midwest, whereas increasing temperatures may lead to decreasing baseflow trends in spring and summer in northern Wisconsin, Kansas, and Nebraska.  more » « less
Award ID(s):
1633098
PAR ID:
10462834
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
33
Issue:
5
ISSN:
0885-6087
Page Range / eLocation ID:
p. 748-758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Characterizing streamflow changes in the agricultural U.S. Midwest is critical foreffective planning and management of water resources throughout the region. Theobjective of this study is to determine if and how baseflow has responded to landalteration and climate changes across the study area during the 50‐year study periodby exploring hydrologic variations based on long‐term stream gage data. This studyevaluates monthly contributions to annual baseflow along with possible trends overthe 1966–2016 period for 458 U.S. Geological Survey streamflow gages within 12different Midwestern states. It also examines the influence of climate and land usefactors on the observed baseflow trends. Monthly contribution breakdowns demon-strate how the majority of baseflow is discharged into streams during the springmonths (March, April, and May) and is overall more substantial throughout the spring(especially in April) and summer (June, July, and August). Baseflow has not remainedconstant over the study period, and the results of the trend detection from theMann–Kendall test reveal that baseflows have increased and are the strongest fromMay to September. This analysis is confirmed by quantile regression, which suggeststhat for most of the year, the largest changes are detected in the central part of thedistribution. Although increasing baseflow trends are widespread throughout theregion, decreasing trends are few and limited to Kansas and Nebraska. Furtheranalysis reveals that baseflow changes are being driven by both climate and landuse change across the region. Increasing trends in baseflow are linked to increasesin precipitation throughout the year and are most prominent during May and June.Changes in agricultural intensity (in terms of harvested corn and soybean acreage)are linked to increasing trends in the central and western Midwest, whereasincreasing temperatures may lead to decreasing baseflow trends in spring and summerin northern Wisconsin, Kansas, and Nebraska. 
    more » « less
  2. Abstract Baseflow is an essential water resource because it is the groundwater discharged to streams and represents long‐term storage. Understanding its future changes is a major concern for water supply and ecosystem health. This study examines the impacts of climate and agriculture on monthly baseflow in the U.S. Midwest through the end of the 21st century. We use a statistical approach to evaluate three scenarios. The first scenario is based on downscaled and bias corrected global climate model (GCM) outputs and the representative concentration pathway (RCP) 8.5, and agriculture is held constant (and equal to the mean from 2013 to 2019). In the next two scenarios, climate is held constant (2010–2019) to isolate the impact of agriculture on baseflow. In terms of agricultural changes, we consider scenarios representative of either increases or decreases with respect to the production of corn and soybeans. Changes in the climate system point to increases in baseflow that are likely a result of increased precipitation and antecedent wetness. Seasonally, warmer temperature in the winter and spring (i.e., February to July) is expected to cause increasing trends in baseflow. Changes in land use showed that agriculture would either mitigate the impact of climate change or possibly amplify it. Expanding corn and soybean areas would increase baseflow in the Corn Belt region. On the other hand, converting land back to perennial vegetation would decrease baseflow throughout the entire year. Despite its simplicity, this study can provide basic information to understand where to expect adverse effects on baseflow and thus improve land management practices in those areas. 
    more » « less
  3. Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23 000–69 000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30–200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales. 
    more » « less
  4. Land surface albedo is a significant regulator of climate. Changes in land use worldwide have greatly reshaped landscapes in the recent decades. Deforestation, agricultural development, and urban expansion alter land surface albedo, each with unique influences on shortwave radiative forcing and global warming impact (GWI). Here, we characterize the changes in landscape albedo-induced GWI (GWIΔα) at multiple temporal scales, with a special focus on the seasonal and monthly GWIΔα over a 19-year period for different land cover types in five ecoregions within a watershed in the upper Midwest USA. The results show that land cover changes from the original forest exhibited a net cooling effect, with contributions of annual GWIΔα varying by cover type and ecoregion. Seasonal and monthly variations of the GWIΔα showed unique trends over the 19-year period and contributed differently to the total GWIΔα. Cropland contributed most to cooling the local climate, with seasonal and monthly offsets of 18% and 83%, respectively, of the annual greenhouse gas emissions of maize fields in the same area. Urban areas exhibited both cooling and warming effects. Cropland and urban areas showed significantly different seasonal GWIΔα at some ecoregions. The landscape composition of the five ecoregions could cause different net landscape GWIΔα. 
    more » « less
  5. Abstract Understanding the dominant drivers of hydrological change is essential for water resources management. Watersheds in the United States are experiencing different types of changes (e.g., wet gets wetter and dry gets drier); however, few studies have analyzed what drivers are responsible for these changes, and how the dominant drivers vary over time and as a function of the climate/water regime and land cover. This study uses a time‐varying Budyko framework to quantify the relative importance of precipitation, potential evapotranspiration, and other factors (e.g., climate seasonality, agricultural drainage, and urbanization) in 889 watersheds in the contiguous United States from 1950 to 2009. Results show that watersheds that are getting wetter are primarily due to increases in precipitation. However, watersheds in dry climates that are getting drier are primarily due to other factors, while watersheds in wet climates that are getting drier are primarily due to precipitation. The drivers causing statistically significant streamflow trends vary depending on dominant land‐use types. Temporally, the increasing effects of other factors are more pronounced after the 1980s in the Midwest. The dominant drivers of streamflow in the United States are time‐varying instead of constant. This is consistent with non‐stationary patterns of streamflow. The time‐varying drivers provide information on the processes that are increasingly important and require the most attention in water resources management. 
    more » « less