skip to main content

Title: Human amplified changes in precipitation–runoff patterns in large river basins of the Midwestern United States
Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23 000–69 000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30–200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial more » agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Hydrology and Earth System Sciences
Page Range or eLocation-ID:
5065 to 5088
Sponsoring Org:
National Science Foundation
More Like this
  1. Streamflow is one the most important variables controlling and maintaining aquatic ecosystem integrity, diversity, and sustainability. This study identified and quantified changes in 34 hydrologic characteristics and parameters at 30 long term (1939–2016) discharge stations in the Southeast Atlantic and Gulf Coast Hydrologic Region (Region 3) using Indicators of Hydrologic Alteration (IHA) variables. The southeastern United States (SEUS) is a biodiversity hotspot, and the region has experienced a number of rapid land use/land cover changes with multiple primary drivers. Studies in the SEUS have been mostly localized on specific rivers, reservoir catchments and/or species, but the overall region has not been assessed for the long-term period of 1939–2016 for multiple hydrologic characteristic parameters. The objectives of the study were to provide an overview of multiple river basins and 31 hydrologic characteristic parameters of streamflow in Region 3 for a longer period and to develop a conceptual map of impacts of selected stressors and changes in hydrology and climate in the SEUS. A seven step procedure was used to accomplish these objectively: Step 1: Download data from the 30 USGS gauging stations. Steps 2 and 3: Select and analyze the 31 IHA parameters using boxplots, scatter plots, and PDFs. Steps 4more »and 5: Synthesize the drivers of changes and alterations and the various change points in streamflow in the literature. Step 6: Synthesize the climate of the SEUS in terms of temperature and precipitation changes. Step 7: Develop a conceptual map of impacts of selected stressors on hydrology using Driver–Pressure–State-Impact–Response (DPSIR) framework and IHA parameters. The 31 IHA parameters were analyzed. The meta-analysis of literature in the SEUS revealed the precipitation changes observed ranged from −30% to +35% and temperature changes from −2 °C to 6 °C by 2099. The fiftieth percentile of the Global Climate Models (GCM) predict no precipitation change and an increase in the temperature of 2.5 °C in the region by 2099. Among the GCMs, the 5th and 95th percentile of precipitation changes range between −40% and 110% and temperature changes between −2 °C and 6 °C by 2099. Meta-analysis of land use/land cover show the region has experienced changes. A number of rapid land use/land cover changes in 1957, 1970, and 1998 are some of the change points documented in the literature for precipitation and streamflow in the region. A conceptual map was developed to represent the impacts of selected drivers and the changes in hydrology and climate in the study region for three land use/land cover categories in three different periods.« less
  2. Abstract

    Tile drainage is one of the dominant agricultural management practices in the United States and has greatly expanded since the late 1990s. It has proven effects on land surface water balance and quantity and quality of streamflow at the local scale. The effect of tile drainage on crop production, hydrology, and the environment on a regional scale is elusive due to lack of high-resolution, spatially-explicit tile drainage area information for the Contiguous United States (CONUS). We developed a 30-m resolution tile drainage map of the most-likely tile-drained area of the CONUS (AgTile-US) from county-level tile drainage census using a geospatial model that uses soil drainage information and topographic slope as inputs. Validation of AgTile-US with 16000 ground truth points indicated 86.03% accuracy at the CONUS-scale. Over the heavily tile-drained midwestern regions of the U.S., the accuracy ranges from 82.7% to 93.6%. These data can be used to study and model the hydrologic and water quality responses of tile drainage and to enhance streamflow forecasting in tile drainage dominant regions.

  3. Characterizing streamflow changes in the agricultural U.S. Midwest is critical foreffective planning and management of water resources throughout the region. Theobjective of this study is to determine if and how baseflow has responded to landalteration and climate changes across the study area during the 50‐year study periodby exploring hydrologic variations based on long‐term stream gage data. This studyevaluates monthly contributions to annual baseflow along with possible trends overthe 1966–2016 period for 458 U.S. Geological Survey streamflow gages within 12different Midwestern states. It also examines the influence of climate and land usefactors on the observed baseflow trends. Monthly contribution breakdowns demon-strate how the majority of baseflow is discharged into streams during the springmonths (March, April, and May) and is overall more substantial throughout the spring(especially in April) and summer (June, July, and August). Baseflow has not remainedconstant over the study period, and the results of the trend detection from theMann–Kendall test reveal that baseflows have increased and are the strongest fromMay to September. This analysis is confirmed by quantile regression, which suggeststhat for most of the year, the largest changes are detected in the central part of thedistribution. Although increasing baseflow trends are widespread throughout theregion, decreasing trends are few andmore »limited to Kansas and Nebraska. Furtheranalysis reveals that baseflow changes are being driven by both climate and landuse change across the region. Increasing trends in baseflow are linked to increasesin precipitation throughout the year and are most prominent during May and June.Changes in agricultural intensity (in terms of harvested corn and soybean acreage)are linked to increasing trends in the central and western Midwest, whereasincreasing temperatures may lead to decreasing baseflow trends in spring and summerin northern Wisconsin, Kansas, and Nebraska.« less
  4. Many currently forested areas in the southern Appalachians were harvested in the early 1900s and cleared for agriculture or pasture, but have since been abandoned and reverted to forest (old-field succession). Land-use and land-cover changes such as these may have altered the timing and quantity of water yield (Q). We examined 80 years of streamflow and vegetation data in an experimental watershed that underwent forest–grass–forest conversion (i.e., old-field succession treatment). We hypothesized that changes in forest species composition and water use would largely explain long-term changes in Q. Aboveground biomass was comparable among watersheds before the treatment (208.3 Mg ha−1), and again after 45 years of forest regeneration (217.9 Mg ha−1). However, management practices in the treatment watershed altered resulting species composition compared to the reference watershed. Evapotranspiration (ET) and Q in the treatment watershed recovered to pretreatment levels after 9 years of abandonment, then Q became less (averaging 5.4 % less) and ET more (averaging 4.5 % more) than expected after the 10th year up to the present day. We demonstrate that the decline in Q and corresponding increase in ET could be explained by the shift in major forest species from predominantly Quercus and Carya before treatment to predominantly Liriodendron and Acer through old-field succession. The annual change in Q can be attributed to changesmore »in seasonal Q. The greatest management effect on monthly Q occurred during the wettest (i.e., above median Q) growing-season months, when Q was significantly lower than expected. In the dormant season, monthly Q was higher than expected during the wettest months.« less
  5. Abstract

    Lakes represent as much as ∼25% of the total land surface area in lowland permafrost regions. Though decreasing lake area has become a widespread phenomenon in permafrost regions, our ability to forecast future patterns of lake drainage spanning gradients of space and time remain limited. Here, we modeled the drivers of gradual (steady declining lake area) and catastrophic (temporally abrupt decrease in lake area) lake drainage using 45 years of Landsat observations (i.e. 1975–2019) across 32 690 lakes spanning climate and environmental gradients across northern Alaska. We mapped lake area using supervised support vector machine classifiers and object based image analyses using five-year Landsat image composites spanning 388 968 km2. Drivers of lake drainage were determined with boosted regression tree models, using both static (e.g. lake morphology, proximity to drainage gradient) and dynamic predictor variables (e.g. temperature, precipitation, wildfire). Over the past 45 years, gradual drainage decreased lake area between 10% and 16%, but rates varied over time as the 1990s recorded the highest rates of gradual lake area losses associated with warm periods. Interestingly, the number of catastrophically drained lakes progressively decreased at a rate of ∼37% decade−1from 1975–1979 (102–273 lakes draining year−1) to 2010–2014 (3–8 lakes drainingmore »year−1). However this 40 year negative trend was reversed during the most recent time-period (2015–2019), with observations of catastrophic drainage among the highest on record (i.e. 100–250 lakes draining year−1), the majority of which occurred in northwestern Alaska. Gradual drainage processes were driven by lake morphology, summer air and lake temperature, snow cover, active layer depth, and the thermokarst lake settlement index (R2adj= 0.42, CV = 0.35,p< 0.0001), whereas, catastrophic drainage was driven by the thawing season length, total precipitation, permafrost thickness, and lake temperature (R2adj= 0.75, CV = 0.67,p< 0.0001). Models forecast a continued decline in lake area across northern Alaska by 15%–21% by 2050. However these estimates are conservative, as the anticipated amplitude of future climate change were well-beyond historical variability and thus insufficient to forecast abrupt ‘catastrophic’ drainage processes. Results highlight the urgency to understand the potential ecological responses and feedbacks linked with ongoing Arctic landscape reorganization.

    « less