skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aberration free synthetic aperture second harmonic generation holography
Second harmonic generation (SHG) microscopy is a valuable tool for optical microscopy. SHG microscopy is normally performed as a point scanning imaging method, which lacks phase information and is limited in spatial resolution by the spatial frequency support of the illumination optics. In addition, aberrations in the illumination are difficult to remove. We propose and demonstrate SHG holographic synthetic aperture holographic imaging in both the forward (transmission) and backward (epi) imaging geometries. By taking a set of holograms with varying incident angle plane wave illumination, the spatial frequency support is increased and the input and output pupil phase aberrations are estimated and corrected – producing diffraction limited SHG imaging that combines the spatial frequency support of the input and output optics. The phase correction algorithm is computationally efficient and robust and can be applied to any set of measured field imaging data.  more » « less
Award ID(s):
2006416
PAR ID:
10462845
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
31
Issue:
20
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 32434
Size(s):
Article No. 32434
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Structured Illumination Microscopy enables live imaging with sub-diffraction resolution. Unfortunately, optical aberrations can lead to loss of resolution and artifacts in Structured Illumination Microscopy rendering the technique unusable in samples thicker than a single cell. Here we report on the combination of Adaptive Optics and Structured Illumination Microscopy enabling imaging with 150 nm lateral and 570 nm axial resolution at a depth of 80 µm throughCaenorhabditis elegans. We demonstrate that Adaptive Optics improves the three-dimensional resolution, especially along the axial direction, and reduces artifacts, successfully realizing 3D-Structured Illumination Microscopy in a variety of biological samples. 
    more » « less
  2. Third harmonic generation (THG) provides a valuable, label-free approach to imaging biological systems. To date, THG microscopy has been performed using point-scanning methods that rely on intensity measurements lacking phase information of the complex field. We report the first demonstration, to the best of our knowledge, of THG holographic microscopy and the reconstruction of the complex THG signal field with spatial synthetic aperture imaging. Phase distortions arising from measurement-to-measurement fluctuations and imaging components cause optical aberrations in the reconstructed THG field. We have developed an aberration-correction algorithm that estimates and corrects these phase distortions to reconstruct the spatial synthetic aperture THG field without optical aberrations. 
    more » « less
  3. Imaging beyond the diffraction limit barrier has attracted wide attention due to the ability to resolve previously hidden image features. Of the various super-resolution microscopy techniques available, a particularly simple method called saturated excitation microscopy (SAX) requires only simple modification of a laser scanning microscope: The illumination beam power is sinusoidally modulated and driven into saturation. SAX images are extracted from the harmonics of the modulation frequency and exhibit improved spatial resolution. Unfortunately, this elegant strategy is hindered by the incursion of shot noise that prevents high-resolution imaging in many realistic scenarios. Here, we demonstrate a technique for super-resolution imaging that we call computational saturated absorption (CSA) in which a joint deconvolution is applied to a set of images with diversity in spatial frequency support among the point spread functions (PSFs) used in the image formation with saturated laser scanning fluorescence microscopy. CSA microscopy allows access to the high spatial frequency diversity in a set of saturated effective PSFs, while avoiding image degradation from shot noise. 
    more » « less
  4. Diffraction-limited optical imaging through scattering media has the potential to transform many applications such as airborne and space-based imaging (through the atmosphere), bioimaging (through skin and human tissue), and fiber-based imaging (through fiber bundles). Existing wavefront shaping methods can image through scattering media and other obscurants by optically correcting wavefront aberrations using high-resolution spatial light modulators—but these methods generally require (i) guidestars, (ii) controlled illumination, (iii) point scanning, and/or (iv) statics scenes and aberrations. We propose neural wavefront shaping (NeuWS), a scanning-free wavefront shaping technique that integrates maximum likelihood estimation, measurement modulation, and neural signal representations to reconstruct diffraction-limited images through strong static and dynamic scattering media without guidestars, sparse targets, controlled illumination, nor specialized image sensors. We experimentally demonstrate guidestar-free, wide field-of-view, high-resolution, diffraction-limited imaging of extended, nonsparse, and static/dynamic scenes captured through static/dynamic aberrations. 
    more » « less
  5. Speckle patterns have been used widely in imaging techniques such as ghost imaging, dynamic speckle illumination microscopy, structured illumination microscopy, and photoacoustic fluctuation imaging. Recent advances in the ability to control the statistical properties of speckles has enabled the customization of speckle patterns for specific imaging applications. In this work, we design and create special speckle patterns for parallelized nonlinear pattern-illumination microscopy based on fluorescence photoswitching. We present a proof-of-principle experimental demonstration where we obtain a spatial resolution three times higher than the diffraction limit of the illumination optics in our setup. Furthermore, we show that tailored speckles vastly outperform standard speckles. Our work establishes that customized speckles are a potent tool in parallelized super-resolution microscopy. 
    more » « less