skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on March 1, 2025

Title: Bioinspired synthesis and characterization of zinc oxide nanoparticles and assessment of their cytotoxicity and antimicrobial efficacy
Abstract

Zinc oxide nanoparticles (ZnO NPs) are versatile and promising, with diverse applications in environmental remediation, nanomedicine, cancer treatment, and drug delivery. In this study, ZnO NPs were synthesized utilizing extracts derived fromAcacia catechu, Artemisia vulgaris, andCynodon dactylon. The synthesized ZnO NPs showed an Ultraviolet–visible spectrum at 370 nm, and X-ray diffraction analysis indicated the hexagonal wurtzite framework with the average crystallite size of 15.07 nm, 16.98 nm, and 18.97 nm for nanoparticles synthesized utilizingA. catechu, A. vulgaris,andC. dactylonrespectively. Scanning electron microscopy (SEM) demonstrated spherical surface morphology with average diameters of 18.5 nm, 17.82 nm, and 17.83 nm for ZnO NPs prepared fromA. catechu, A. vulgaris, andC. dactylon,respectively. Furthermore, ZnO NPs tested againstStaphylococcus aureus, Kocuria rhizophila, Klebsiella pneumonia,andShigella sonneidemonstrated a zone of inhibition of 8 to 14 mm. The cell viability and cytotoxicity effects of ZnO NPs were studied on NIH-3T3 mouse fibroblast cells treated with different concentrations (5 μg/mL, 10 μg/mL, and 50 μg/mL). The results showed biocompatibility of all samples, except with higher doses causing cell death. In conclusion, the ZnO NPs synthesized through plant-mediated technique showed promise for potential utilization in various biomedical applications in the future.

 
more » « less
Award ID(s):
2100861
PAR ID:
10511113
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Discover Applied Sciences
Date Published:
Journal Name:
Discover Applied Sciences
Volume:
6
Issue:
3
ISSN:
3004-9261
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles) Rodolphe Antoine (Ed.)

    This research focuses on the plant-mediated green synthesis process to produce gold nanoparticles (Au NPs) using upland cress (Barbarea verna), as various biomolecules within the upland cress act as both reducing and capping agents. The synthesized gold nanoparticles were thoroughly characterized using UV-vis spectroscopy, surface charge (zeta potential) analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray diffraction (XRD). The results indicated the synthesized Au NPs are spherical and well-dispersed with an average diameter ~11 nm and a characteristic absorbance peak at ~529 nm. EDX results showed an 11.13% gold content. Colloidal Au NP stability was confirmed with a zeta potential (ζ) value of −36.8 mV. X-ray diffraction analysis verified the production of crystalline face-centered cubic gold. Moreover, the antimicrobial activity of the Au NPs was evaluated using Gram-negative Escherichiacoli and Gram-positive Bacillus megaterium. Results demonstrated concentration-dependent antimicrobial properties. Lastly, applications of the Au NPs in catalysis and biomedicine were evaluated. The catalytic activity of Au NPs was demonstrated through the conversion of 4-nitrophenol to 4-aminophenol which followed first-order kinetics. Cellular uptake and cytotoxicity were evaluated using both BMSCs (stem) and HeLa (cancer) cells and the results were cell type dependent. The synthesized Au NPs show great potential for various applications such as catalysis, pharmaceutics, and biomedicine.

     
    more » « less
  2. In the present study, the removal of both As(III) and As(V) from aqueous solutions using synthesized ZnO nanomaterials was achieved. The ZnO nanomaterial was synthesized using a precipitation technique and characterized using XRD, SEM, and Raman spectroscopy. XRD confirmed the ZnO nanoparticles were present in the hexagonal wurtzite structure. SEM of the particles showed they were aggregates of triangular and spherical particles. The average nanoparticle size was determined to be 62.03 ± 4.06 nm using Scherrer’s analysis of the three largest diffraction peaks. Raman spectroscopy of the ZnO nanoparticles showed only ZnO peaks, whereas the after-reaction samples indicated that As(V) was present in both As(V)- and As(III)-reacted samples. The adsorption of the ions was determined to be pH-independent, and a binding pH of 4 was selected as the pH for reaction. Batch isotherm studies showed the highest binding capacities occurred at 4 °C with 5.83 mg/g and 14.68 mg/g for As(III) and As(V), respectively. Thermodynamic studies indicated an exothermic reaction occurred and the binding of both As(III) and As(VI) took place through chemisorption, which was determined by the ΔH values of −47.29 and −63.4 kJ/mol for As(V) and As(III), respectively. In addition, the change in Gibbs free energy, ΔG, for the reaction confirmed the exothermic nature of the reaction; the spontaneity of the reaction decreased with increasing temperature. Results from batch time dependency studies showed the reaction occurred within the first 60 min of contact time.

     
    more » « less
  3. Abstract

    Polyvinylpyrrolidone (PVP) fibers embedded with Zinc Oxide nanoparticles (ZnO NPs) were prepared by the centrifugal spinning of aqueous PVP solutions and ZnO NPs. The ZnO NPs were synthesized and coated with either cetyltrimethylammonium bromide or hexadecyltrimethylammonium bromide. The structure and morphology of the nanocomposite fibers were studied using scanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, Fourier transformed infrared spectroscopy and Thermogravimetric analysis. The effect of surfactant coating on the antibacterial activity of ZnO NPs and PVP/ZnO nanocomposite fibers againstEscherichia coli(E. coli) andBacillus megaterium(B. megaterium) bacteria was systematically investigated. The present study indicated that coating the ZnO NPs with surfactants resulted in large and uniform inhibition of bacterial growth.

     
    more » « less
  4. Abstract

    This research provides a new method for preparing nanoparticle‐coated viscose nonwoven fabrics, which has broad application prospects in the functional fiber industry. In this work amino‐terminated hyperbranched polymer (HBP)‐capped Selenium nanoparticles (Se NPs) were synthesized for coating viscose nonwoven fabric (VNF) via impregnation method to produce a controllable and uniform Se NPs coating on the viscose fiber surface. The prepared Se NPs and the treated VNF were characterized by the transmission electron microscope (TEM), x‐ray diffraction (XRD), x‐ray photoelectron spectroscopy (XPS), field emission scanning electron microcopy (FE‐SEM), and antibacterial measurement. The results indicate that the Se NPs were spherical shaped with an average size of 50 nm. FESEM, XRD, and XPS characterizations demonstrated that Se NPs can adsorbed and distributed uniformly on the fiber surface. Se NPs‐coated VNF showed above 99.9% bacterial reduction ofStaphylococcus aureusandEscherichia coliwhile the Se element content on VNF was about 2.92 mg/g.

     
    more » « less
  5. This study addresses the processing of nonwoven fibrous materials obtained by centrifugal spinning method, namely Forcespinning; a high yield and low production cost technique little explored in this field. Poly(D, L‐lactic acid) (PDLLA) and poly(3‐hydroxybutyrate) (PHB) were used as matrices and reinforced with zinc oxide nanoparticles (n‐ZnO). The morphology, mechanical, and thermal performance of the developed composites were analyzed as well as the antibacterial effect of n‐ZnO. Fibrous materials with n‐ZnO concentrations of 1, 3, and 5 wt. % for PDLLA and 1 and 3 wt. % for PHB were evaluated. The results showed that the incorporation of n‐ZnO produces an increase in the viscosity of the precursor solutions for both polymeric systems, which caused an increase in the average fiber diameter, though the morphology was not affected, obtaining mostly long, continuous, and homogenous fibers. In addition, a decrease in thermal stability was observed to a greater extent in PDLLA systems. Regarding the mechanical performance, optimal properties were obtained at a concentration of 3 and 1 wt. % of n‐ZnO for PDLLA and PHB, respectively. Antibacterial studies showed that PHB with 1 and 3 wt. % of n‐ZnO effectively combat strains ofE. coliandS. aureus, presenting 100% of strain growth inhibition. In the case of PDLLA, a higher n‐ZnO concentration (5 wt. %) was required to reach a strain growth inhibition above 97%. Finally, cell viability tests demonstrated that the designed fibrous mats support cell proliferation, indicating their potential for use as scaffolds in bone tissue regeneration.

     
    more » « less