skip to main content


Search for: All records

Award ID contains: 2026304

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Electric fields associated with a developing natural lightning leader are difficult to measure. This work demonstrates a new approach to indirectly probing the electric fields in the streamer zone of a lightning leader. Using a 10–250 MHz broadband lightning interferometer, very high frequency (VHF) radio emissions from the tip of a positive cloud‐to‐ground (CG) leader were measured and localized. We specially use a normalized spectral analysis to avoid the challenge of absolute system calibration to show that the positive leader spectrum exhibits a clear cutoff frequency at 80 MHz. Compared with theoretical predictions, this cutoff frequency corresponds to a streamer growth rate ofand an average electric field of 0.9 times the conventional breakdown fieldin streamer bursts from the positive leader. Implications for the detectability of positive leaders through VHF emissions and for the production of X‐rays by positive leaders are analyzed.

     
    more » « less
  2. Abstract

    Evidence of positive polarity dominated streamers preceding fast negative breakdown (FNB) and of simultaneous positive and negative polarity streamer development in lightning initiation is reported. Observations of lightning initiation as FNB have remained a puzzle because simulations of lightning initiation have shown that negative streamers are not produced in virgin air without simultaneous positive streamers. Here, the authors observe positive streamer development forms first or at least simultaneously with negative streamers. Further evidence comes from observations of mixed fast breakdown (FB). The overall trajectory of the positive breakdown during such mixed events indicates that the positive streamers continuously propagate during the burst of strong negative breakdown. These observations indicate that even when negative streamers dominate the overall very high frequency (VHF) emissions, both positive and negative streamers are propagating simultaneously from the initiation point. These findings on the structure and dynamics of FB provide key new insight to our understanding of lightning initiation.

     
    more » « less
  3. Abstract

    Cloud‐to‐ground strokes, narrow bipolar events, and energetic in‐cloud pulses are known classes of high peak‐current lightning processes that occur in thunderstorms. Here, we report one more distinct class of high peak‐current events observed exclusively over mountainous terrain, usually above 2,000 m altitude, in the continental Unites States. These events, which we call mountain‐top energetic pulses (MEPs), are bipolar pulses with negative radiated field polarities. MEPs are generated between the high mountain tops and compact overhead thunderclouds. Evidence supports the hypothesis that MEPs are produced by terrain‐initiated upward positive leaders propagating in high electric fields due to the proximity of the low negative charge regions of the thunderstorms. This scenario further suggests the possibility that MEPs are associated with downward terrestrial gamma‐ray flashes, and their high peak currents imply that they may produce elves.

     
    more » « less
  4. Abstract

    Many of the details of how terrestrial gamma‐ray flashes (TGFs) are produced, including their association with upward‐propagating in‐cloud lightning leader channels, remain poorly understood. Measurements of the low‐frequency radio emissions associated with TGF production continue to provide unique views and key insights into the electrodynamics of this process. Here we report further details on the connection between energetic in‐cloud pulses (EIPs) and TGFs. With coordinated measurements from both ground‐based radio sensors and space‐based gamma‐ray detectors on the Fermi and Reuven Ramaty High Energy Solar Spectroscopic Imager spacecraft, we find that all ten +EIPs that occurred within the searched space‐and‐time window are associated with simultaneous TGFs, including two new TGFs that were not previously identified by the gamma‐ray measurements alone. The results in this study not only solidify the tight connection between +EIPs and TGFs, but also demonstrate the practicability of detecting a subpopulation of TGFs with ground‐based radio sensors alone.

     
    more » « less
  5. Abstract

    On February 8, 2019, the Atmosphere‐Space Interaction Monitor observed a terrestrial gamma‐ray flash (TGF) and an Elve from a positive intracloud (+IC) lightning during the initial breakdown stage of a lightning flash north east of Puerto Rico. A second Elve produced by the return stroke (RS) of a negative cloud‐to‐ground (−CG) lightning was observed 456 ms later about 300 km south of the first one. Radio measurements show that a short (30 μs) and large (280 kA km) energetic in‐cloud pulse (EIP) produced the electromagnetic (EM) wave for the first Elve while the RS of the −CG was the EM source for the second Elve. Assuming that the EIP and the RS were the sources of the 777 nm emissions, both the delay relative to the ultra‐violet pulse and the shape and duration of the 777 nm emissions can be explained by scattering and absorption inside the clouds. The TGF produced by the +IC lightning had the same duration as the EIP (∼30 μs). Due to the ±80 μs timing uncertainty of the TGF, we can only state that TGF was produced just before or most likely simultaneously with the EIP. The large 777 nm pulse indicates that a large part of the EIP was produced by a current flowing in a hot channel, but it is likely that the TGF current also contributed significantly to the EIP.

     
    more » « less
  6. Key Points A framework merging unsupervised clustering and supervised convolutional neural network (CNN) for lightning classification is developed Clustering of positive polarity energetic lightning radio pulses (>150 kA) identifies three processes: +EIPs (6%–7%), +NBEs, and +CGs CNNs detect 95.2% of manually identified +EIPs with up to 98.7% accuracy, enabling studying EIP‐TGF link with lower peak current (>50 kA) 
    more » « less
    Free, publicly-accessible full text available May 16, 2024
  7. Key Points Optical, very high frequency, and low‐frequency observations are combined to analyze the transition from upward to horizontal propagation of initial in‐cloud lightning A drop in the optical blue‐to‐red ratio indicates when the dominant illumination process changes from streamers to likely stepped leader We find for in‐cloud lightning that the upward initial leader and the horizontal stepped leader could be physically different 
    more » « less
  8. Three-dimensional radio and optical mapping reveals that streamers of jets can extend from cloud top to the ionosphere. 
    more » « less