skip to main content


Title: A Generative Reinforcement Learning Framework for Predictive Analytics
In this work, we present a new approach for latent system dynamics and remaining useful life (RUL) estimation of complex degrading systems using generative modeling and reinforcement learning. The main contributions of the proposed method are two-fold. First, we show how a deep generative model can approximate the functionality of high-fidelity simulators and, thus, is able to substitute expensive and complex physics-based models with data-driven surrogate ones. In other words, we can use the generative model in lieu of the actual system as a surrogate model of the system. Furthermore, we show how to use such surrogate models for predictive analytics. Our method follows two main steps. First, we use a deep variational autoencoder (VAE) to learn the distribution over the latent state-space that characterizes the dynamics of the system under monitoring. After model training, the probabilistic VAE decoder becomes the surrogate system model. Then, we develop a scalable reinforcement learning framework using the decoder as the environment, to train an agent for identifying adequate approximate values of the latent dynamics, as well as the RUL.To our knowledge, the method presented in this paper is the first in industrial prognostics that utilizes generative models and reinforcement learning in that capacity. While the process requires extensive data preprocessing and environment tailored design, which is not always possible, it demonstrates the ability of generative models working in conjunction with reinforcement learning to provide proper value estimations for system dynamics and their RUL. To validate the quality of the proposed method, we conducted numerical experiments using the train_FD002 dataset provided by the NASA CMAPSS data repository. Different subsets were used to train the VAE and the RL agent, and a leftover set was then used for model validation. The results shown prove the merit of our method and will further assist us in developing a data-driven RL environment that incorporates more complex latent dynamic layers, such as normal/faulty operating conditions and hazard processes.  more » « less
Award ID(s):
1846975
NSF-PAR ID:
10462985
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings annual Reliability and Maintainability Symposium
ISSN:
2577-0993
Page Range / eLocation ID:
1-7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we present a new approach for latent system dynamics and remaining useful life (RUL) estimation of complex degrading systems using generative modeling and reinforcement learning. The main contributions of the proposed method are two-fold. First, we show how a deep generative model can approximate the functionality of high-fidelity simulators and, thus, is able to substitute expensive and complex physics-based models with data-driven surrogate ones. In other words, we can use the generative model in lieu of the actual system as a surrogate model of the system. Furthermore, we show how to use such surrogate models for predictive analytics. Our method follows two main steps. First, we use a deep variational autoencoder (VAE) to learn the distribution over the latent state-space that characterizes the dynamics of the system under monitoring. After model training, the probabilistic VAE decoder becomes the surrogate system model. Then, we develop a scalable reinforcement learning framework using the decoder as the environment, to train an agent for identifying adequate approximate values of the latent dynamics, as well as the RUL. 
    more » « less
  2. This paper studies the fundamental problem of learning deep generative models that consist of multiple layers of latent variables organized in top-down architectures. Such models have high expressivity and allow for learning hierarchical representations. Learning such a generative model requires inferring the latent variables for each training example based on the posterior distribution of these latent variables. The inference typically requires Markov chain Monte Caro (MCMC) that can be time consuming. In this paper, we propose to use noise initialized non-persistent short run MCMC, such as nite step Langevin dynamics initialized from the prior distribution of the latent variables, as an approximate inference engine, where the step size of the Langevin dynamics is variationally optimized by minimizing the Kullback-Leibler divergence between the distribution produced by the short run MCMC and the posterior distribution. Our experiments show that the proposed method outperforms variational auto-encoder (VAE) in terms of reconstruction error and synthesis quality. The advantage of the proposed method is that it is simple and automatic without the need to design an inference model. 
    more » « less
  3. Abstract This work presents a deep reinforcement learning (DRL) approach for procedural content generation (PCG) to automatically generate three-dimensional (3D) virtual environments that users can interact with. The primary objective of PCG methods is to algorithmically generate new content in order to improve user experience. Researchers have started exploring the use of machine learning (ML) methods to generate content. However, these approaches frequently implement supervised ML algorithms that require initial datasets to train their generative models. In contrast, RL algorithms do not require training data to be collected a priori since they take advantage of simulation to train their models. Considering the advantages of RL algorithms, this work presents a method that generates new 3D virtual environments by training an RL agent using a 3D simulation platform. This work extends the authors’ previous work and presents the results of a case study that supports the capability of the proposed method to generate new 3D virtual environments. The ability to automatically generate new content has the potential to maintain users’ engagement in a wide variety of applications such as virtual reality applications for education and training, and engineering conceptual design. 
    more » « less
  4. Reinforcement learning (RL) has recently shown promise in solving difficult numerical problems and has discovered non-intuitive solutions to existing problems. This study investigates the ability of a general RL agent to find an optimal control strategy for spacecraft attitude control problems. Two main types of Attitude Control Systems (ACS) are presented. First, the general ACS problem with full actuation is considered, but with saturation constraints on the applied torques, representing thruster-based ACSs. Second, an attitude control problem with reaction wheel based ACS is considered, which has more constraints on control authority. The agent is trained using the Proximal Policy Optimization (PPO) RL method to obtain an attitude control policy. To ensure robustness, the inertia of the satellite is unknown to the control agent and is randomized for each simulation. To achieve efficient learning, the agent is trained using curriculum learning. We compare the RL based controller to a QRF (quaternion rate feedback) attitude controller, a well-established state feedback control strategy. We investigate the nominal performance and robustness with respect to uncertainty in system dynamics. Our RL based attitude control agent adapts to any spacecraft mass without needing to re-train. In the range of 0.1 to 100,000 kg, our agent achieves 2% better performance to a QRF controller tuned for the same mass range, and similar performance to the QRF controller tuned specifically for a given mass. The performance of the trained RL agent for the reaction wheel based ACS achieved 10 higher better reward then that of a tuned QRF controller 
    more » « less
  5. Abstract

    Sudden stratospheric warmings (SSWs) are the most dramatic events in the wintertime stratosphere. Such extreme events are characterized by substantial disruption to the stratospheric polar vortex, which can be categorized into displacement and splitting types depending on the morphology of the disrupted vortex. Moreover, SSWs are usually followed by anomalous tropospheric circulation regimes that are important for subseasonal-to-seasonal prediction. Thus, monitoring the genesis and evolution of SSWs is crucial and deserves further advancement. Despite several analysis methods that have been used to study the evolution of SSWs, the ability of deep learning methods has not yet been explored, mainly due to the relative scarcity of observed events. To overcome the limited observational sample size, we use data from historical simulations of the Whole Atmosphere Community Climate Model version 6 to identify thousands of simulated SSWs, and use their spatial patterns to train the deep learning model. We utilize a convolutional neural network combined with a variational auto-encoder (VAE)—a generative deep learning model—to construct a phase diagram that characterizes the SSW evolution. This approach not only allows us to create a latent space that encapsulates the essential features of the vortex structure during SSWs, but also offers new insights into its spatiotemporal evolution mapping onto the phase diagram. The constructed phase diagram depicts a continuous transition of the vortex pattern during SSWs. Notably, it provides a new perspective for discussing the evolutionary paths of SSWs: the VAE gives a better-reconstructed vortex morphology and more clearly organized vortex regimes for both displacement-type and split-type events than those obtained from principal component analysis. Our results provide an innovative phase diagram to portray the evolution of SSWs, in which particularly the splitting SSWs are better characterized. Our findings support the future use of deep learning techniques to study the underlying dynamics of extreme stratospheric vortex phenomena, and to establish a benchmark to evaluate model performance in simulating SSWs.

     
    more » « less