- Award ID(s):
- 2005976
- NSF-PAR ID:
- 10462997
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 14
- Issue:
- 9
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The British landscape painter John Constable is considered foundational for the Realist movement in 19th-century European painting. Constable’s painted skies, in particular, were seen as remarkably accurate by his contemporaries, an impression shared by many viewers today. Yet, assessing the accuracy of realist paintings like Constable’s is subjective or intuitive, even for professional art historians, making it difficult to say with certainty what set Constable’s skies apart from those of his contemporaries. Our goal is to contribute to a more objective understanding of Constable’s realism. We propose a new machine-learning-based paradigm for studying pictorial realism in an explainable way. Our framework assesses realism by measuring the similarity between clouds painted by artists noted for their skies, like Constable, and photographs of clouds. The experimental results of cloud classification show that Constable approximates more consistently than his contemporaries the formal features of actual clouds in his paintings. The study, as a novel interdisciplinary approach that combines computer vision and machine learning, meteorology, and art history, is a springboard for broader and deeper analyses of pictorial realism.more » « less
-
Abstract Changing landscape heterogeneity can influence connectivity and alter genetic variation in local populations, but there can be a lag between ecological change and evolutionary responses. Temporal lag effects might be acute in agroecosystems, where land cover has changed substantially in the last two centuries. Here, we evaluate how patterns of an insect pest’s genetic differentiation are related to past and present agricultural land cover change over a 150‐year period. We quantified change in the amount of potato,
Solanum tuberosum L., land cover since 1850 using county‐level agricultural census reports, obtained allele frequency data from 7,408 single‐nucleotide polymorphism loci, and compared effects of historic and contemporary landscape connectivity on genetic differentiation of Colorado potato beetle,Leptinotarsa decemlineata Say, in two agricultural landscapes in the United States. We found that potato land cover peaked in Wisconsin in the early 1900s, followed by rapid decline and spatial concentration, whereas it increased in amount and extent in the Columbia Basin of Oregon and Washington beginning in the 1960s. In both landscapes, we found small effect sizes of landscape resistance on genetic differentiation, but a 20× to 1,000× larger effect of contemporary relative to historic landscape resistances. Demographic analyses suggest population size trajectories were largely consistent among regions and therefore are not likely to have differentially impacted the observed patterns of population structure in each region. Weak landscape genetic associations might instead be related to the coarse resolution of our historical land cover data. Despite rapid changes in agricultural landscapes over the last two centuries, genetic differentiation amongL. decemlineata populations appears to reflect ongoing landscape change. The historical landscape genetic framework employed in this study is broadly applicable to other agricultural pests and might reveal general responses of pests to agricultural land‐use change. -
Landscape structure in the Eastern US experienced great changes in the last century with the expansion of forest cover into abandoned agricultural land and the clearing of secondary forest cover for urban development. In this paper, the spatial and temporal patterns of forest cover from 1914 to 2004 in the Gwynns Falls watershed in Baltimore, Maryland were quantified from historic maps and aerial photographs. Using a database of forest patches from six times—1914, 1938, 1957, 1971, 1999, and 2004—we found that forest cover changed, both temporally and spatially. While total forest area remained essentially constant, turnover in forest cover was very substantial. Less than 20% of initial forest cover remained unchanged. Forest cover became increasingly fragmented as the number, size, shape, and spatial distribution of forest patches within the watershed changed greatly. Forest patch change was also analyzed within 3-km distance bands extending from the urban core to the more suburban end of the watershed. This analysis showed that, over time, the location of high rates of forest cover change shifted from urban to suburban bands which coincides with the spatial shift of urbanization. Forest cover tended to be more stable in and near the urban center, whereas forest cover changed more in areas where urbanization was still in process. These results may have critical implications for the ecological functioning of forest patches and underscore the need to integrate multi-temporal data layers to investigate the spatial pattern of forest cover and the temporal variations of that spatial pattern. Zhou, W., G. Huang, S. T. A. Pickett, and M. L. Cadenasso. 2011. 90 Years of Forest Cover Change in an Urbanizing Watershed: Spatial and Temporal Dynamics. Landscape Ecology 26:645–659. https://doi.org/10.1007/s10980-011-9589-z.more » « less
-
Abstract Heavy metal carboxylate or soap formation is a widespread deterioration problem affecting oil paintings and other works of art bearing oil‐based media. Lead soaps are prevalent in traditional oil paintings because lead white was the white pigment most frequently chosen by old masters for the paints and in some cases for the ground preparations, until the development of other white pigments from approximately the middle of the 18th century on, and because of the wide use of lead‐tin yellow. In the latter part of the 19th century, lead white began to be replaced by zinc white. The factors that influence soap formation have been the focus of intense study starting in the late 1990s. Since 2014, nuclear magnetic resonance (NMR) studies have contributed a unique perspective on the issue by providing chemical, structural, and dynamic information about the species involved in the process, as well as the effects of environmental conditions such as relative humidity and temperature on the kinetics of the reaction(s). In this review, we explore recent insights into soap formation gained through solid‐state NMR and single‐sided NMR techniques.
-
In the northeastern United States, widespread deforestation occurred during the 17–19th centuries as a result of Euro-American agricultural activity. In the late 19th and early 20th centuries, much of this agricultural landscape was reforested as the region experienced industrialization and farmland became abandoned. Many previous studies have addressed these landscape changes, but the primary method for estimating the amount and distribution of cleared and forested land during this time period has been using archival records. This study estimates areas of cleared and forested land using historical land use features extracted from airborne LiDAR data and compares these estimates to those from 19th century archival maps and agricultural census records for several towns in Massachusetts, a state in the northeastern United States. Results expand on previous studies in adjacent areas, and demonstrate that features representative of historical deforestation identified in LiDAR data can be reliably used as a proxy to estimate the spatial extents and area of cleared and forested land in Massachusetts and elsewhere in the northeastern United States. Results also demonstrate limitations to this methodology which can be mitigated through an understanding of the surficial geology of the region as well as sources of error in archival materials.more » « less