skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Detection and Characterization of Exoplanets within the Diffraction Limit: Nulling with a Mode-selective Photonic Lantern
Abstract Coronagraphs allow for faint off-axis exoplanets to be observed, but are limited to angular separations greater than a few beam widths. Accessing closer-in separations would greatly increase the expected number of detectable planets, which scales inversely with the inner working angle. The vortex fiber nuller (VFN) is an instrument concept designed to characterize exoplanets within a single beam width. It requires few optical elements and is compatible with many coronagraph designs as a complementary characterization tool. However, the peak throughput for planet light is limited to about 20%, and the measurement places poor constraints on the planet location and flux ratio. We propose to augment the VFN design by replacing its single-mode fiber with a six-port mode-selective photonic lantern, retaining the original functionality while providing several additional ports that reject starlight but couple planet light. We show that the photonic lantern can also be used as a nuller without a vortex. We present monochromatic simulations characterizing the response of the photonic lantern nuller (PLN) to astrophysical signals and wavefront errors, and show that combining exoplanet flux from the nulled ports significantly increases the overall throughput of the instrument. We show using synthetically generated data that the PLN detects exoplanets more effectively than the VFN. Furthermore, with the PLN, the exoplanet can be partially localized, and its flux ratio constrained. The PLN has the potential to be a powerful characterization tool complementary to traditional coronagraphs in future high-contrast instruments.  more » « less
Award ID(s):
2109231 2109232
PAR ID:
10463086
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
938
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
140
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present numerical characterizations of the wavefront sensing performance for few-mode photonic lantern wavefront sensors (PLWFSs). These characterizations include calculations of the throughput, control space, sensor linearity, and an estimate of the maximum linear reconstruction range for standard and hybrid lanterns with between 3 and 19 ports, atλ=1550nm. We additionally consider the impact of beam-shaping optics and a charge-1 vortex mask placed in the pupil plane. The former is motivated by the application of PLs to high-resolution spectroscopy, which could enable efficient injection into the spectrometer along with simultaneous focal-plane wavefront sensing; similarly, the latter is motivated by the application of PLs to vortex fiber nulling (VFN), which can simultaneously enable wavefront sensing and the nulling of on-axis starlight. Overall, we find that the PLWFS setups tested in this work exhibit good linearity out to ∼0.25−0.5 radians of RMS wavefront error (WFE). Meanwhile, we estimate the maximum amount of WFE that can be handled by these sensors to be around ∼1−2 radians RMS before the sensor response becomes degenerate. In the future, we expect these limits can be pushed further by increasing the number of degrees of freedom, either by adopting higher mode-count lanterns, dispersing lantern outputs, or separating polarizations. Finally, we consider optimization strategies for the design of the PLWFS, which involve both modification of the lantern itself and the use of pre- and post-lantern optics like phase masks and interferometric beam recombiners. 
    more » « less
  2. The photonic lantern (PL) is a tapered waveguide that can efficiently couple light into multiple single-mode optical fibers. Such devices are currently being considered for a number of tasks, including the coupling of telescopes and high-resolution, fiber-fed spectrometers, coherent detection, nulling interferometry, and vortex-fiber nulling. In conjunction with these use cases, PLs can simultaneously perform low-order focal-plane wavefront sensing. In this work, we provide a mathematical framework for the analysis of a PL wavefront sensor (PLWFS), deriving linear and higher-order reconstruction models as well as metrics through which sensing performance—in both the linear and nonlinear regimes—can be quantified. This framework can be extended to account for additional optics such as beam-shaping optics and vortex masks, and can be generalized for other wavefront sensing architectures. Finally, we provide initial numerical verification of our mathematical models by simulating a six-port PLWFS. In a forthcoming companion paper (Lin and Fitzgerald), we provide a more comprehensive numerical characterization of few-port PLWFSs, and consider how the sensing properties of these devices can be controlled and optimized. 
    more » « less
  3. Geyl, Roland; Navarro, Ramón (Ed.)
    Efficiently coupling light from large telescopes to photonic devices is challenging. However, overcoming this challenge would enable diffraction-limited instruments, which offer significant miniaturization and advantages in thermo-mechanical stability. By coupling photonic lanterns with high performance adaptive optics systems, we recently demonstrated through simulation that high throughput diffraction-limited instruments are possible (Lin et al., Applied Optics, 2021). Here we build on that work and present initial results from validation experiments in the near-infrared to corroborate those simulations in the laboratory. Our experiments are conducted using a 19-port photonic lantern coupled to the state-of-the-art SCExAO instrument at the Subaru Telescope. The SCExAO instrument allows us to vary the alignment and focal ratio of the lantern injection, as well as the Strehl ratio and amount of tip/tilt jitter in the beam. In this work, we present experimental characterizations against the aforementioned parameters, in order to compare with previous simulations and elucidate optimal architectures for lantern-fed spectrographs. 
    more » « less
  4. Abstract Vortex fiber nulling (VFN) is a technique for detecting and characterizing faint companions at small separations from their host star. A near-infrared (∼2.3μm) VFN demonstrator mode was deployed on the Keck Planet Imager and Characterizer (KPIC) instrument at the Keck Observatory and presented earlier. In this Letter, we present the first VFN companion detections. Three targets, HIP 21543 Ab, HIP 94666 Ab, and HIP 50319 B, were detected with host–companion flux ratios between 70 and 430 at and within one diffraction beamwidth (λ/D). We complement the spectra from KPIC VFN with flux ratio and position measurements from the CHARA Array to validate the VFN results and provide a more complete characterization of the targets. This Letter reports the first direct detection of these three M dwarf companions, yielding their first spectra and flux ratios. Our observations provide measurements of bulk properties such as effective temperatures, radial velocities, and v sin i , and verify the accuracy of the published orbits. These detections corroborate earlier predictions of the KPIC VFN performance, demonstrating that the instrument mode is ready for science observations. 
    more » « less
  5. Abstract Photonic lanterns (PLs) are tapered waveguides that gradually transition from a multimode fiber geometry to a bundle of single-mode fibers (SMFs). They can efficiently couple multimode telescope light into a multimode fiber entrance at the focal plane and convert it into multiple single-mode beams. Thus, each SMF samples its unique mode (lantern principal mode) of the telescope light in the pupil, analogous to subapertures in aperture masking interferometry (AMI). Coherent imaging with PLs can be enabled by the interference of SMF outputs and applying phase modulation, which can be achieved using a photonic chip beam combiner at the backend (e.g., the ABCD beam combiner). In this study, we investigate the potential of coherent imaging by the interference of SMF outputs of a PL with a single telescope. We demonstrate that the visibilities that can be measured from a PL are mutual intensities incident on the pupil weighted by the cross correlation of a pair of lantern modes. From numerically simulated lantern principal modes of a 6-port PL, we find that interferometric observables using a PL behave similarly to separated-aperture visibilities for simple models on small angular scales (<λ/D) but with greater sensitivity to symmetries and capability to break phase angle degeneracies. Furthermore, we present simulated observations with wave front errors (WFEs) and compare them to AMI. Despite the redundancy caused by extended lantern principal modes, spatial filtering offers stability to WFEs. Our simulated observations suggest that PLs may offer significant benefits in the photon-noise-limited regime and in resolving small angular scales at the low-contrast regime. 
    more » « less