Abstract Young, self-luminous super-Jovian companions discovered by direct imaging provide a challenging test for planet formation and evolution theories. By spectroscopically characterizing the atmospheric compositions of these super-Jupiters, we can constrain their formation histories. Here we present studies of the recently discovered HIP 99770 b, a 16MJuphigh-contrast companion on a 17 au orbit, using the fiber-fed high-resolution spectrograph KPIC ( ∼ 35,000) on the Keck II telescope. OurK-band observations led to detections of H2O and CO in the atmosphere of HIP 99770 b. We carried out free retrieval analyses usingpetitRADTRANSto measure its chemical abundances, including the metallicity and C/O ratio, projected rotation velocity ( ), and radial velocity (RV). We found that the companion’s atmosphere has C/O and [M/H] (1σconfidence intervals), values consistent with those of the Sun and with a companion formation via gravitational instability or core accretion. The projected rotation velocity km s−1is small relative to other directly imaged companions with similar masses and ages. This may imply a nearly pole-on orientation or effective magnetic braking by a circumplanetary disk. In addition, we added the companion-to-primary relative RV measurement to the orbital fitting and obtained updated constraints on orbital parameters. Detailed characterization of super-Jovian companions within 20 au like HIP 99770 b is critical for understanding the formation histories of this population.
more »
« less
Vortex Fiber Nulling for Exoplanet Observations: First Direct Detection of M Dwarf Companions around HIP 21543, HIP 94666, and HIP 50319
Abstract Vortex fiber nulling (VFN) is a technique for detecting and characterizing faint companions at small separations from their host star. A near-infrared (∼2.3μm) VFN demonstrator mode was deployed on the Keck Planet Imager and Characterizer (KPIC) instrument at the Keck Observatory and presented earlier. In this Letter, we present the first VFN companion detections. Three targets, HIP 21543 Ab, HIP 94666 Ab, and HIP 50319 B, were detected with host–companion flux ratios between 70 and 430 at and within one diffraction beamwidth (λ/D). We complement the spectra from KPIC VFN with flux ratio and position measurements from the CHARA Array to validate the VFN results and provide a more complete characterization of the targets. This Letter reports the first direct detection of these three M dwarf companions, yielding their first spectra and flux ratios. Our observations provide measurements of bulk properties such as effective temperatures, radial velocities, and , and verify the accuracy of the published orbits. These detections corroborate earlier predictions of the KPIC VFN performance, demonstrating that the instrument mode is ready for science observations.
more »
« less
- PAR ID:
- 10500272
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 965
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L15
- Size(s):
- Article No. L15
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract M dwarfs are common host stars to exoplanets but often lack atmospheric abundance measurements. Late-M dwarfs are also good analogs to the youngest substellar companions, which share similarTeff∼ 2300–2800 K. We present atmospheric analyses for the M7.5 companion HIP 55507 B and its K6V primary star with Keck/KPIC high-resolution (R∼ 35,000)K-band spectroscopy. First, by including KPIC relative radial velocities between the primary and secondary in the orbit fit, we improve the dynamical mass precision by 60% and find , putting HIP 55507 B above the stellar–substellar boundary. We also find that HIP 55507 B orbits its K6V primary star with au ande= 0.40 ± 0.04. From atmospheric retrievals of HIP 55507 B, we measure [C/H] = 0.24 ± 0.13, [O/H] = 0.15 ± 0.13, and C/O = 0.67 ± 0.04. Moreover, we strongly detect13CO (7.8σsignificance) and tentatively detect (3.7σsignificance) in the companion’s atmosphere and measure and after accounting for systematic errors. From a simplified retrieval analysis of HIP 55507 A, we measure and for the primary star. These results demonstrate that HIP 55507 A and B have consistent12C/13C and16O/18O to the <1σlevel, as expected for a chemically homogeneous binary system. Given the similar flux ratios and separations between HIP 55507 AB and systems with young substellar companions, our results open the door to systematically measuring13CO and abundances in the atmospheres of substellar or even planetary-mass companions with similar spectral types.more » « less
-
Abstract We present Super-RDI, a unique framework for the application of reference star differential imaging (RDI) to Keck/NIRC2 high-contrast imaging observations with the vortex coronagraph. Super-RDI combines frame selection and signal-to-noise ratio (S/N) optimization techniques with a large multiyear reference point-spread function (PSF) library to achieve optimal PSF subtraction at small angular separations. We compile an ∼7000 frame reference PSF library based on a set of 288 new Keck/NIRC2 sequences of 237 unique targets acquired between 2015 and 2019 as part of two planet-search programs designed for RDI, one focusing on nearby young M dwarfs and the other targeting members of the Taurus star-forming region. For our data set, synthetic companion injection-recovery tests reveal that frame selection with the mean-squared error metric combined with Karhunen–Loève Image-Processing-based PSF subtraction using 1000–3000 frames and ≲500 principal components yields the highest average S/N for injected synthetic companions. We uniformly reduce targets in the young M-star survey with both Super-RDI and angular differential imaging (ADI). For the typical parallactic angle rotation of our data set (∼10°), Super-RDI performs better than a widely used implementation of ADI-based PSF subtraction at separations ≲0.″4 (≈5λ/D), gaining an average of 0.25 mag in contrast at 0.″25 and 0.4 mag in contrast at 0.″15. This represents a performance improvement in separation space over RDI with single-night reference star observations (∼100 frame PSF libraries) applied to a similar Keck/NIRC2 data set in previous work. We recover two known brown dwarf companions and provide detection limits for 155 targets in the young M-star survey. Our results demonstrate that increasing the PSF library size with careful selection of reference frames can improve the performance of RDI with the Keck/NIRC2 vortex coronagraph in .more » « less
-
Abstract We used the Keck Planet Imager and Characterizer to obtain high-resolution (R∼ 35,000)K-band spectra ofκAndromedae b, a planetary-mass companion orbiting the B9V star,κAndromedae A. We characterized its spin, radial velocity, and bulk atmospheric parameters through use of a forward-modeling framework to jointly fit planetary spectra and residual starlight speckles, obtaining likelihood-based posterior probabilities. We also detected H2O and CO in its atmosphere via cross correlation. We measured a value forκAndromedae b of 38.42 ± 0.05 km s−1, allowing us to extend our understanding of the population of close-in bound companions at higher rotation rates. This rotation rate is one of the highest spins relative to breakup velocity measured to date, at close to 50% of breakup velocity. We identify a radial velocity km s−1, which we use with existing astrometry and radial velocity measurements to update the orbital fit. We also measure an effective temperature of 1700 ± 100 K and a of 4.7 ± 0.5 cgs dex.more » « less
-
Abstract Using Keck Planet Imager and Characterizer high-resolution (R∼ 35,000) spectroscopy from 2.29 to 2.49μm, we present uniform atmospheric retrievals for eight young substellar companions with masses of ∼10–30MJup, orbital separations spanning ∼50–360 au, andTeffbetween ∼1500 and 2600 K. We find that all companions have solar C/O ratios and metallicities to within the 1σ–2σlevel, with the measurements clustered around solar composition. Stars in the same stellar associations as our systems have near-solar abundances, so these results indicate that this population of companions is consistent with formation via direct gravitational collapse. Alternatively, core accretion outside the CO snowline would be compatible with our measurements, though the high mass ratios of most systems would require rapid core assembly and gas accretion in massive disks. On a population level, our findings can be contrasted with abundance measurements for directly imaged planets withm< 10MJup, which show tentative atmospheric metal enrichment compared to their host stars. In addition, the atmospheric compositions of our sample of companions are distinct from those of hot Jupiters, which most likely form via core accretion. For two companions withTeff∼ 1700–2000 K (κAnd b and GSC 6214–210 b), our best-fit models prefer a nongray cloud model with >3σsignificance. The cloudy models yield 2σ−3σlowerTefffor these companions, though the C/O and [C/H] still agree between cloudy and clear models at the 1σlevel. Finally, we constrain12CO/13CO for three companions with the highest signal-to-noise ratio data (GQ Lup b, HIP 79098b, and DH Tau b) and report and radial velocities for all companions.more » « less