On the Optimal Delay Growth Rate of Multi-Hop Line Networks: Asymptotically Delay-Optimal Designs and the Corresponding Error Exponents
More Like this
-
The Partial Integral Equation (PIE) framework provides a unified algebraic representation for use in analysis, control, and estimation of infinite-dimensional systems. However, the presence of input delays results in a PIE representation with dependence on the derivative of the control input, u˙. This dependence complicates the problem of optimal state-feedback control for systems with input delay – resulting in a bilinear optimization problem. In this paper, we present two strategies for convexification of the H∞-optimal state-feedback control problem for systems with input delay. In the first strategy, we use a generalization of Young's inequality to formulate a convex optimization problem, albeit with some conservatism. In the second strategy, we filter the actuator signal – introducing additional dynamics, but resulting in a convex optimization problem without conservatism. We compare these two optimal control strategies on four example problems, solving the optimization problem using the latest release of the PIETOOLS software package for analysis, control and simulation of PIEs.more » « less
-
Many applications, e.g., federated learning, require the aggregation of information across a large number of distributed nodes. In this paper, we explore efficient schemes to do this at scale leveraging aggregation at intermediate nodes across overlay trees. Files/updates are split into chunks which are in turn simultaneously aggregated over different trees. For a synchronous setting with homogeneous communications capabilities and deterministic link delays, we develop a delay optimal aggregation schedule. In the asynchronous setting, where delays are stochastic but i.i.d., across links, we show that for an asynchronous implementation of the above schedule, the expected aggregation delay is near-optimal. We then consider the impact that failures in the network have on the resulting Mean Square Error (MSE) for the estimated aggregates and how it can be controlled through the addition of redundancy, reattempts, and optimal failure-aware estimates for the desired aggregate. Based on the analysis of a natural model of failures, we show how to choose parameters to optimize the trade-off between aggregation delay and MSE. We present simulation results exhibiting the above mentioned tradeoffs. We also consider a more general class of correlated failures and demonstrate via simulation the applicability of our techniques in those settings as well.more » « less
-
This paper studies the learning-based optimal control for a class of infinite-dimensional linear time-delay systems. The aim is to fill the gap of adaptive dynamic programming (ADP) where adaptive optimal control of infinite-dimensional systems is not addressed. A key strategy is to combine the classical model-based linear quadratic (LQ) optimal control of time-delay systems with the state-of-art reinforcement learning (RL) technique. Both the model-based and data-driven policy iteration (PI) approaches are proposed to solve the corresponding algebraic Riccati equation (ARE) with guaranteed convergence. The proposed PI algorithm can be considered as a generalization of ADP to infinite-dimensional time-delay systems. The efficiency of the proposed algorithm is demonstrated by the practical application arising from autonomous driving in mixed traffic environments, where human drivers’ reaction delay is considered.more » « less
An official website of the United States government

