ABSTRACT We introduce the Sloan Digital Sky Survey (SDSS)/ Apache Point Observatory Galactic Evolution Experiment (APOGEE) value-added catalogue of Galactic globular cluster (GC) stars. The catalogue is the result of a critical search of the APOGEE Data Release 17 (DR17) catalogue for candidate members of all known Galactic GCs. Candidate members are assigned to various GCs on the basis of position in the sky, proper motion, and radial velocity. The catalogue contains a total of 7737 entries for 6422 unique stars associated with 72 Galactic GCs. Full APOGEE DR17 information is provided, including radial velocities and abundances for up to 20 elements. Membership probabilities estimated on the basis of precision radial velocities are made available. Comparisons with chemical compositions derived from the GALactic Archaeology with HERMES (GALAH) survey, as well as optical values from the literature, show good agreement. This catalogue represents a significant increase in the public data base of GC star chemical compositions and kinematics, providing a massive homogeneous data set that will enable a variety of studies. The catalogue in fits format is available for public download from the SDSS-IV DR17 value-added catalogue website.
more »
« less
High-velocity Stars in SDSS/APOGEE DR17
Abstract We report 23 stars having Galactocentric velocities larger than 450 km s −1 in the final data release of the APOGEE survey. This sample was generated using space velocities derived by complementing the high-quality radial velocities from the APOGEE project in Sloan Digital Sky Survey’s Data Release 17 (DR17) with distances and proper motions from Gaia early Data Release 3 (eDR3). We analyze the observed kinematics and derived dynamics of these stars, considering different potential models for the Galaxy. We find that three stars could be unbound depending on the adopted potential, but in general all of the stars show typical kinematics of halo stars. The APOGEE DR17 spectroscopic results and Gaia eDR3 photometry are used to assess the stellar parameters and chemical properties of the stars. All of the stars belong to the red giant branch, and, in general, they follow the abundance pattern of typical halo stars. There are a few exceptions that would deserve further analysis through high-resolution spectroscopy. In particular, we identify a high-velocity Carbon-Enhanced Metal-Poor star, with a Galactocentric velocity of 482 km s −1 . We do not confirm any hypervelocity star in the sample, but this result is very sensitive to the adopted distances and less sensitive to the Galactic potential.
more »
« less
- Award ID(s):
- 1909497
- PAR ID:
- 10463315
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 164
- Issue:
- 5
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 187
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Open clusters (OCs) are groups of stars formed from the same cloud of gas and cosmic dust. They play an important role in studies of star formation and evolution and our understanding of galaxy structure and dynamics. The main objective of this work is to identify stars that belong to OCs using astrometric data from Gaia EDR3 and spectroscopic data from APOGEE DR17. Furthermore, we investigate the metallicity gradients and orbital properties of the OCs in our sample. Methods. By applying the HDBSCAN clustering algorithm to these data, we identified observed stars in our galaxy with similar dynamics, chemical compositions, and ages. The orbits of the OCs were also calculated using the GravPot16 code. Results. We find 1987 stars that tentatively belong to 49 OCs; 941 of these stars have probabilities above 80% of belonging to OCs. Our metallicity gradient presents a two-slope shape for two measures of different Galactic center distances – the projected Galactocentric distance and the guiding center radius to the Galactic center – as already reported in previous work. However, when we separate the OCs by age, we observe no significant difference in the metallicity gradient slope beyond a certain distance from the Galactic center. Our results show a shallower gradient for clusters younger than 2 Gyr than those older than 2 Gyr. All our OCs dynamically assemble the disk-like population very well, and they are in prograde orbits, which is typical for disk-like populations. Some OCs resonate with the Galactic bar at the Lagrange points L4 and L5.more » « less
-
ABSTRACT We employ a sample of 135 873 RR Lyrae stars (RRLs) with precise photometric-metallicity and distance estimates from the newly calibrated P–ϕ31–R21–[Fe/H] and Gaia G band P–R21–[Fe/H] absolute magnitude–metallicity relations of Li et al., combined with available proper motions from Gaia EDR3, and 6955 systemic radial velocities from Gaia DR3 and other sources, in order to explore the chemistry and kinematics of the halo of the Milky Way (MW). This sample is ideally suited for characterization of the inner- and outer-halo populations of the stellar halo, free from the bias associated with spectroscopically selected probes, and for estimation of their relative contributions as a function of Galactocentric distance. The results of a Gaussian mixture model analysis of these contributions are broadly consistent with other observational studies of the halo, and with expectations from recent MW simulation studies. We apply the hdbscan clustering method to the specific energies and cylindrical actions (E, Jr, Jϕ, Jz), identifying 97 dynamically tagged groups (DTGs) of RRLs, and explore their associations with recognized substructures of the MW. The precise photometric-distance determinations (relative distance errors on the order of 5 per cent or better), and the resulting high-quality determination of dynamical parameters, yield highly statistically significant (low) dispersions of [Fe/H] for the stellar members of the DTGs compared to random draws from the full sample, indicating that they share common star-formation and chemical histories, influenced by their birth environments.more » « less
-
null (Ed.)ABSTRACT We perform analysis of the 3D kinematics of Milky Way disc stars in mono-age populations. We focus on stars between Galactocentric distances of R = 6 and 14 kpc, selected from the combined LAMOST Data Release 4 (DR4) red clump giant stars and Gaia DR2 proper motion catalogue. We confirm the 3D asymmetrical motions of recent works and provide time tagging of the Galactic outer disc asymmetrical motions near the anticentre direction out to Galactocentric distances of 14 kpc. Radial Galactocentric motions reach values up to 10 km s−1, depending on the age of the population, and present a north–south asymmetry in the region corresponding to density and velocity substructures that were sensitive to the perturbations in the early 6 Gyr. After that time, the disc stars in this asymmetrical structure have become kinematically hotter, and are thus not sensitive to perturbations, and we find the structure is a relatively younger population. With quantitative analysis, we find stars both above and below the plane at R ≳ 9 kpc that exhibit bending mode motions of which the sensitive duration is around 8 Gyr. We speculate that the in-plane asymmetries might not be mainly caused by a fast rotating bar, intrinsically elliptical outer disc, secular expansion of the disc, or streams. Spiral arm dynamics, out-of-equilibrium models, minor mergers or others are important contributors. Vertical motions might be dominated by bending and breathing modes induced by complicated inner or external perturbers. It is likely that many of these mechanisms are coupled together.more » « less
-
Precise Gaia measurements of positions, parallaxes, and proper motions provide an opportunity to calculate 3D positions and 2D velocities (i.e., 5D phase-space) of Milky Way stars. Where available, spectroscopic radial velocity (RV) measurements provide full 6D phase-space information, however there are now and will remain many stars without RV measurements. Without an RV it is not possible to directly calculate 3D stellar velocities; however, one can infer 3D stellar velocities by marginalizing over the missing RV dimension. In this paper, we infer the 3D velocities of stars in the Kepler field in Cartesian Galactocentric coordinates (vx, vy, vz). We directly calculate velocities for around a quarter of all Kepler targets, using RV measurements available from the Gaia, LAMOST, and APOGEE spectroscopic surveys. Using the velocity distributions of these stars as our prior, we infer velocities for the remaining three quarters of the sample by marginalizing over the RV dimension. The median uncertainties on our inferred vx, vy, and vz velocities are around 4, 18, and 4 km/s, respectively. We provide 3D velocities for a total of 148,590 stars in the Kepler field. These 3D velocities could enable kinematic age-dating, Milky Way stellar population studies, and other scientific studies using the benchmark sample of well-studied Kepler stars. Although the methodology used here is broadly applicable to targets across the sky, our prior is specifically constructed from and for the Kepler field. Care should be taken to use a suitable prior when extending this method to other parts of the Galaxy.more » « less
An official website of the United States government

