skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cost-effectiveness analysis of geographically-based teleretinal diabetic retinopathy screening policies for urban and rural populations
Geographically-based screening policies for diabetic retinopathy (DR) can be effective in developing teleretinal imaging (TRI) guidelines while identifying patients with limited geographic access to eye care. This study conducts cost-effectiveness analysis of different screening policies for urban and rural diabetic patients in Western Pennsylvania. A Monte Carlo simulation model was used to evaluate the cost-effectiveness of 2 standardized screening policies (annual clinic-based screening (ACS) and annual TRI-based screening (ATRI)) and a personalized TRI-based screening policy (PTRI) for both urban and rural cohorts. PTRI was generated by a previously developed mathematical model that autonomously makes semi-annual screening recommendations based on each patient’s disease progression and compliance (Dorali et al. IOVS 2022; 63(7)). For each policy, hypothetical urban and rural cohorts of 50,000 patients were simulated and lifetime QALYs and costs were collected for each patient. TRI compliance rates were derived from electronic medical records. Compliance with clinic-based screening was selected from literature-based values (12-45% for rural patients and 50-65% for urban patients). For a base case urban cohort with an A1C level of 7% and entering age of 40, costs per QALY gain (CPQ) for ACS, ATRI, and PTRI were $744.93±1.57, $792.38±1.64, and $714.60±1.56, respectively; PTRI produced more cost saving than ACS with the same QALY gain (See Fig 1). For a base case rural cohort, CPQ for ACS, ATRI, and PTRI were $869.15±1.80, $819.24±1.88, and $761.51±1.42, respectively; both ATRI and PTRI dominated ACS in QALY gains and cost saving (Fig 1). PTRI recommended TRI more to rural patients (94.13±0.01%) than to urban patients (87.20±0.02%). For the rural cohort, the minimum average TRI compliance rate such that ATRI is more cost-effective than ACS was 56% (Fig 2). TRI-based screening was found more beneficial for rural patients. PTRI was found dominant in QALY gain and cost saving for both urban and rural cohorts against standardized policies. These findings suggest that TRI is best utilized when location-specific factors such as geographic access to care or TRI compliance are considered.  more » « less
Award ID(s):
1908244
PAR ID:
10463497
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Investigative ophthalmology visual science
Volume:
64
Issue:
8
ISSN:
1552-5783
Page Range / eLocation ID:
5437-5437
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Purpose : Personalized screening guidelines can be an effective strategy to prevent diabetic retinopathy (DR)-related vision loss. However, these strategies typically do not capture behavior-based factors such as a patient’s compliance or cost preferences. This study develops a mathematical model to identify screening policies that capture both DR progression and behavioral factors to provide personalized recommendations. Methods : A partially observable Markov decision process model (POMDP) is developed to provide personalized screening recommendations. For each patient, the model estimates the patient’s probability of having a sight-threatening diabetic eye disorder (STDED) yearly via Bayesian inference based on natural history, screening results, and compliance behavior. The model then determines a personalized, threshold-based recommendation for each patient annually--either no action (NA), teleretinal imaging (TRI), or clinical screening (CS)--based on the patient’s current probability of having STDED as well as patient-specific preference between cost saving ($) and QALY gain. The framework is applied to a hypothetical cohort of 40-year-old African American male patients. Results : For the base population with TRI and CS compliance rates of 65% and 55% and equal preference for cost and QALY, NA is identified as an optimal recommendation when the patient’s probability of having STDED is less than 0.72%, TRI when the probability is [0.72%, 2.09%], and CS when the probability is above 2.09%. Simulated against annual clinical screening, the model-based policy finds an average decrease of 7.07% in cost/QALY (95% CI; 6.93-7.23%) and 15.05% in blindness prevalence over a patient’s lifetime (95% CI; 14.88-15.23%). For patients with equal preference for cost and QALY, the model identifies 6 different types of threshold-based policies (See Fig 1). For patients with strong preference for QALY gain, CS-only policies had an increase in prevalence by a factor of 19.2 (see Fig 2). Conclusions : The POMDP model is highly flexible and responsive in incorporating behavioral factors when providing personalized screening recommendations. As a decision support tool, providers can use this modeling framework to provide unique, catered recommendations. 
    more » « less
  2. Abstract Introduction Algorithm‐enabled remote patient monitoring (RPM) programs pose novel operational challenges. For clinics developing and deploying such programs, no standardized model is available to ensure capacity sufficient for timely access to care. We developed a flexible model and interactive dashboard of capacity planning for whole‐population RPM‐based care for T1D. Methods Data were gathered from a weekly RPM program for 277 paediatric patients with T1D at a paediatric academic medical centre. Through the analysis of 2 years of observational operational data and iterative interviews with the care team, we identified the primary operational, population, and workforce metrics that drive demand for care providers. Based on these metrics, an interactive model was designed to facilitate capacity planning and deployed as a dashboard. Results The primary population‐level drivers of demand are the number of patients in the program, the rate at which patients enrol and graduate from the program, and the average frequency at which patients require a review of their data. The primary modifiable clinic‐level drivers of capacity are the number of care providers, the time required to review patient data and contact a patient, and the number of hours each provider allocates to the program each week. At the institution studied, the model identified a variety of practical operational approaches to better match the demand for patient care. Conclusion We designed a generalizable, systematic model for capacity planning for a paediatric endocrinology clinic providing RPM for T1D. We deployed this model as an interactive dashboard and used it to facilitate expansion of a novel care program (4 T Study) for newly diagnosed patients with T1D. This model may facilitate the systematic design of RPM‐based care programs. 
    more » « less
  3. Objective:Develop workflows and billing processes for a Certified Diabetes Care and Education Specialist (CDCES)-led remote patient monitoring (RPM) program to transition the Teamwork, Targets, Technology, and Tight Control (4T) Study to our clinic’s standard of care. Methods:We identified stakeholders within a pediatric endocrinology clinic (hospital compliance, billing specialists, and clinical informatics) to identify, discuss, and approve billing codes and workflow. The group evaluated billing code stipulations, such as the timing of continuous glucose monitor (CGM) interpretation, scope of work, providers’ licensing, and electronic health record (EHR) documentation to meet billing compliance standards. We developed a CDCES workflow for asynchronous CGM interpretation and intervention and initiated an RPM billing pilot. Results:We built a workflow for CGM interpretation (billing code: 95251) with the CDCES as the service provider. The workflow includes data review, patient communications, and documentation. Over the first month of the pilot, RPM billing codes were submitted for 52 patients. The average reimbursement rate was $110.33 for commercial insurance (60% of patients) and $46.95 for public insurance (40% of patients) per code occurrence. Conclusions:Continuous involvement of CDCES and hospital stakeholders was essential to operationalize all relevant aspects of clinical care, workflows, compliance, documentation, and billing. CGM interpretation with RPM billing allows CDCES to work at the top of their licensing credential, increase clinical care touch points, and provide a business case for expansion. As evidence of the clinical benefits of RPM increases, the processes developed here may facilitate broader adoption of revenue-generating CDCES-led care to fund RPM. 
    more » « less
  4. Successful aging in rural Alaska communities has been established as a characteristic best described by reaching “Eldership,” conveying reverence and respect from the community and implying leadership responsibilities. Most Alaska Native (AN) Elders believe that aging successfully or aging well happens within their home communities. However, limited rural resources lead Elders to relocate to urban settings. While protective factors supporting aging well in rural communities have been established, little is known about which factors support aging well after relocation to an urban setting. This exploratory, qualitative, community-based participatory research study explored AN Elder’s (ages 48–84) experiences comparing successful aging within four rural Alaska communities and of Elders who relocated from a rural to an urban community. Thirteen rural-based Elders and 12 urban-based Elders semi-structured interviews were compared to explore how successful aging was experienced similarly and differently in rural and urban settings. To age well in urban Alaska, access to health care services, family, and community engagement were essential. The main challenges for urban Elders involved establishing a sense of community, intergenerational involvement, and the ability to continue traditional ways of living. This research identified challenges, similarities, and differences in aging well in an urban community. The findings of this study inform practices, services, and policies to improve existing urban services and initiate needed urban services to foster successful aging after relocation from remote rural areas into urban communities in Alaska. 
    more » « less
  5. Introduction:The Virtual Diabetes Specialty Clinic (VDiSC) study demonstrated the feasibility of providing comprehensive diabetes care entirely virtually by combining virtual visits with continuous glucose monitoring support and remote patient monitoring (RPM). However, the financial sustainability of this model remains uncertain. Methods:We developed a financial model to estimate the variable costs and revenues of virtual diabetes care, using visit data from the 234 VDiSC participants with type 1 or type 2 diabetes. Data included virtual visits with certified diabetes care and education specialists (CDCES), endocrinologists, and behavioral health services (BHS). The model estimated care utilization, variable costs, reimbursement revenue, gross profit, and gross profit margin per member, per month (PMPM) for privately insured, publicly insured, and overall clinic populations (75% privately insured). We performed two-way sensitivity analyses on key parameters. Results:Gross profit and gross profit margin PMPM (95% confidence interval) were estimated at $−4 ($−14.00 to $5.68) and −4% (−3% to −6%) for publicly insured patients; $267.26 ($256.59-$277.93) and 73% (58%-88%) for privately insured patients; and $199.41 ($58.43-$340.39) and 67% (32%-102%) for the overall clinic. Profits were primarily driven by CDCES visits and RPM. Results were sensitive to insurance mix, cost-to-charge ratio, and commercial-to-Medicare price ratio. Conclusions:Virtual diabetes care can be financially viable, although profitability relies on privately insured patients. The analysis excluded fixed costs of clinic infrastructure, and securing reimbursement may be challenging in practice. The financial model is adaptable to various care settings and can serve as a planning tool for virtual diabetes clinics. 
    more » « less