skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A quantitative model to ensure capacity sufficient for timely access to care in a remote patient monitoring program
Abstract Introduction Algorithm‐enabled remote patient monitoring (RPM) programs pose novel operational challenges. For clinics developing and deploying such programs, no standardized model is available to ensure capacity sufficient for timely access to care. We developed a flexible model and interactive dashboard of capacity planning for whole‐population RPM‐based care for T1D. Methods Data were gathered from a weekly RPM program for 277 paediatric patients with T1D at a paediatric academic medical centre. Through the analysis of 2 years of observational operational data and iterative interviews with the care team, we identified the primary operational, population, and workforce metrics that drive demand for care providers. Based on these metrics, an interactive model was designed to facilitate capacity planning and deployed as a dashboard. Results The primary population‐level drivers of demand are the number of patients in the program, the rate at which patients enrol and graduate from the program, and the average frequency at which patients require a review of their data. The primary modifiable clinic‐level drivers of capacity are the number of care providers, the time required to review patient data and contact a patient, and the number of hours each provider allocates to the program each week. At the institution studied, the model identified a variety of practical operational approaches to better match the demand for patient care. Conclusion We designed a generalizable, systematic model for capacity planning for a paediatric endocrinology clinic providing RPM for T1D. We deployed this model as an interactive dashboard and used it to facilitate expansion of a novel care program (4 T Study) for newly diagnosed patients with T1D. This model may facilitate the systematic design of RPM‐based care programs.  more » « less
Award ID(s):
2205084
PAR ID:
10461939
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Endocrinology, Diabetes & Metabolism
ISSN:
2398-9238
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective:Develop workflows and billing processes for a Certified Diabetes Care and Education Specialist (CDCES)-led remote patient monitoring (RPM) program to transition the Teamwork, Targets, Technology, and Tight Control (4T) Study to our clinic’s standard of care. Methods:We identified stakeholders within a pediatric endocrinology clinic (hospital compliance, billing specialists, and clinical informatics) to identify, discuss, and approve billing codes and workflow. The group evaluated billing code stipulations, such as the timing of continuous glucose monitor (CGM) interpretation, scope of work, providers’ licensing, and electronic health record (EHR) documentation to meet billing compliance standards. We developed a CDCES workflow for asynchronous CGM interpretation and intervention and initiated an RPM billing pilot. Results:We built a workflow for CGM interpretation (billing code: 95251) with the CDCES as the service provider. The workflow includes data review, patient communications, and documentation. Over the first month of the pilot, RPM billing codes were submitted for 52 patients. The average reimbursement rate was $110.33 for commercial insurance (60% of patients) and $46.95 for public insurance (40% of patients) per code occurrence. Conclusions:Continuous involvement of CDCES and hospital stakeholders was essential to operationalize all relevant aspects of clinical care, workflows, compliance, documentation, and billing. CGM interpretation with RPM billing allows CDCES to work at the top of their licensing credential, increase clinical care touch points, and provide a business case for expansion. As evidence of the clinical benefits of RPM increases, the processes developed here may facilitate broader adoption of revenue-generating CDCES-led care to fund RPM. 
    more » « less
  2. Introduction:The Virtual Diabetes Specialty Clinic (VDiSC) study demonstrated the feasibility of providing comprehensive diabetes care entirely virtually by combining virtual visits with continuous glucose monitoring support and remote patient monitoring (RPM). However, the financial sustainability of this model remains uncertain. Methods:We developed a financial model to estimate the variable costs and revenues of virtual diabetes care, using visit data from the 234 VDiSC participants with type 1 or type 2 diabetes. Data included virtual visits with certified diabetes care and education specialists (CDCES), endocrinologists, and behavioral health services (BHS). The model estimated care utilization, variable costs, reimbursement revenue, gross profit, and gross profit margin per member, per month (PMPM) for privately insured, publicly insured, and overall clinic populations (75% privately insured). We performed two-way sensitivity analyses on key parameters. Results:Gross profit and gross profit margin PMPM (95% confidence interval) were estimated at $−4 ($−14.00 to $5.68) and −4% (−3% to −6%) for publicly insured patients; $267.26 ($256.59-$277.93) and 73% (58%-88%) for privately insured patients; and $199.41 ($58.43-$340.39) and 67% (32%-102%) for the overall clinic. Profits were primarily driven by CDCES visits and RPM. Results were sensitive to insurance mix, cost-to-charge ratio, and commercial-to-Medicare price ratio. Conclusions:Virtual diabetes care can be financially viable, although profitability relies on privately insured patients. The analysis excluded fixed costs of clinic infrastructure, and securing reimbursement may be challenging in practice. The financial model is adaptable to various care settings and can serve as a planning tool for virtual diabetes clinics. 
    more » « less
  3. Background Remote patient monitoring (RPM) technologies can support patients living with chronic conditions through self-monitoring of physiological measures and enhance clinicians’ diagnostic and treatment decisions. However, to date, large-scale pragmatic RPM implementation within health systems has been limited, and understanding of the impacts of RPM technologies on clinical workflows and care experience is lacking. Objective In this study, we evaluate the early implementation of operational RPM initiatives for chronic disease management within the ambulatory network of an academic medical center in New York City, focusing on the experiences of “early adopter” clinicians and patients. Methods Using a multimethod qualitative approach, we conducted (1) interviews with 13 clinicians across 9 specialties considered as early adopters and supporters of RPM and (2) speculative design sessions exploring the future of RPM in clinical care with 21 patients and patient representatives, to better understand experiences, preferences, and expectations of pragmatic RPM use for health care delivery. Results We identified themes relevant to RPM implementation within the following areas: (1) data collection and practices, including impacts of taking real-world measures and issues of data sharing, security, and privacy; (2) proactive and preventive care, including proactive and preventive monitoring, and proactive interventions and support; and (3) health disparities and equity, including tailored and flexible care and implicit bias. We also identified evidence for mitigation and support to address challenges in each of these areas. Conclusions This study highlights the unique contexts, perceptions, and challenges regarding the deployment of RPM in clinical practice, including its potential implications for clinical workflows and work experiences. Based on these findings, we offer implementation and design recommendations for health systems interested in deploying RPM-enabled health care. 
    more » « less
  4. Background:Youth with type 1 diabetes (T1D) and public insurance have lower diabetes technology use. This pilot study assessed the feasibility of a program to support continuous glucose monitor (CGM) use with remote patient monitoring (RPM) to improve glycemia for youth with established T1D and public insurance. Methods:From August 2020 to June 2023, we provided CGM with RPM support via patient portal messaging for youth with established T1D on public insurance with challenges obtaining consistent CGM supplies. We prospectively collected hemoglobin A1c(HbA1c), standard CGM metrics, and diabetes technology use over 12 months. Results:The cohort included 91 youths with median age at enrollment 14.7 years, duration of diabetes 4.4 years, 33% non-English speakers, and 44% Hispanic. Continuous glucose monitor data were consistently available (≥70%) in 23% of the participants. For the 64% of participants with paired HbA1cvalues at enrollment and study end, the median HbA1cdecreased from 9.8% to 9.0% ( P < .001). Insulin pump users increased from 31 to 48 and automated insulin delivery users increased from 11 to 38. Conclusions:We established a program to support CGM use in youth with T1D and barriers to consistent CGM supplies, offering lessons for other clinics to address disparities with team-based, algorithm-enabled, remote T1D care. This real-world pilot and feasibility study noted challenges with low levels of protocol adherence and obtaining complete data in this cohort. Future iterations of the program should explore RPM communication methods that better align with this population’s preferences to increase participant engagement. 
    more » « less
  5. Methods to optimize care after T1D diagnosis are needed. We hypothesized lowering A1c targets to <7% would further lower A1c in the 4T Study in which CGM with asynchronous remote patient monitoring (RPM) is initiated after T1D diagnosis. All youth with newly diagnosed T1D (June 2020-March 2022) were offered CGM and RPM after diagnosis (Study 1, n=133). We compared A1c at 1-year in Study 1 with the 4T Pilot (2018-20) and Historical cohorts (2014-16). We visualized population-based A1c trajectories using locally estimated scatter plot smoothing (Fig) and % meeting A1c targets. Mean A1c at diagnosis was similar in Pilot (12.2%±2.1%) and Study 1 (12.2±2.4%) and higher than the Historical cohort (10.7±2.5%). In Study 1, the median age of diagnosis was 10.8 years, 55% male, 40% non-Hispanic White, and 38% with public insurance. CGM initiation occurred within 30 days of diagnosis in 98.5%. At 3, 6, 9, and 12 months post-diagnosis, the Study 1 cohort had LOESS-based mean A1c differences of 0.16%, 0.24%, 0.31%, and 0.58% lower than the Pilot and 0.04%, 0.60%, 0.83%, and 1.06% lower than the Historical cohort. A1c target <7% was met by 61% of youth in Study 1, 51% in the Pilot and 28% in the Historical cohort. Time <70mg/dl was ≤2.3%. The 4T program which emphasizes early CGM initiation, RPM, tighter glucose targets, and consistent team messaging was associated with lower A1c. These data support implementation of the 4T program in youth with T1D. Disclosure P.Prahalad: None. D.M.Maahs: Advisory Panel; Medtronic, LifeScan Diabetes Institute, MannKind Corporation, Consultant; Abbott, Research Support; Dexcom, Inc. 4t study group: n/a. V.Ding: None. D.P.Zaharieva: Advisory Panel; Dexcom, Inc., Research Support; Hemsley Charitable Trust, International Society for Pediatric and Adolescent Diabetes, Insulet Corporation, Speaker's Bureau; American Diabetes Association, Ascensia Diabetes Care, Medtronic. A.Addala: None. F.K.Bishop: None. D.Scheinker: None. R.Johari: None. M.Desai: None. K.K.Hood: Consultant; Cecelia Health. Funding National Institutes of Health (P30DK116074), (R18DK122422 to D.M.M.); Dexcom, Inc.; Lucile Packard Children’s Hospital Auxiliaries Endowment; Stanford Maternal and Child Health Research Institute 
    more » « less