Abstract We develop a topological analysis of robust traffic pace patterns using persistent homology. We develop Rips filtrations, parametrized by pace, for a symmetrization of traffic pace along the (naturally) directed edges in a road network. Our symmetrization is inspired by recent work of Turner (2019Algebr. Geom. Topol.191135–1170). Our goal is to construct barcodes which help identify meaningful pace structures, namely connected components or ‘rings’. We develop a case study of our methods using datasets of Manhattan and Chengdu traffic speeds. In order to cope with the computational complexity of these large datasets, we develop an auxiliary application of the directed Louvain neighborhood-finding algorithm. We implement this as a preprocessing step prior to our main persistent homology analysis in order to coarse-grain small topological structures. We finally compute persistence barcodes on these neighborhoods. The persistence barcodes have a metric structure which allows us to both qualitatively and quantitatively compare traffic networks. As an example of the results, we find robust connected pace structures near Midtown bridges connecting Manhattan to the mainland.
more »
« less
Let's be litter free
We sought to develop a series of activities that would allow sixth- and seventh-grade students to develop an understanding of the occurrence and impact of litter in freshwater ecosystems (such as Lake Michigan and the Chicago River) and apply those understandings to evaluating various methods for monitoring AL in local environments. We also had the opportunity to collaborate with scientists and community partners who are actively engaged in research and education outreach around this issue.
more »
« less
- Award ID(s):
- 1552825
- PAR ID:
- 10463500
- Date Published:
- Journal Name:
- Science scope
- Volume:
- 43
- Issue:
- 3
- ISSN:
- 0887-2376
- Page Range / eLocation ID:
- 42-52
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Universities have been forced to rely on remote educational technology to facilitate the rapid shift to online learning. In doing so, they acquire new risks of security vulnerabilities and privacy violations. To help universities navigate this landscape, we develop a model that describes the actors, incentives, and risks, informed by surveying 105 educators and 10 administrators. Next, we develop a methodology for administrators to assess security and privacy risks of these products. We then conduct a privacy and security analysis of 23 popular platforms using a combination of sociological analyses of privacy policies and 129 state laws, alongside a technical assessment of platform software. Based on our findings, we develop recommendations for universities to mitigate the risks to their stakeholders.more » « less
-
Synergistic learning of computational thinking (CT) and STEM has proven to effective in helping students develop better understanding of STEM topics, while simultaneously acquiring CT concepts and practices. With the ubiquity of computational devices and tools, advances in technology,and the globalization of product development, it is important for our students to not only develop multi-disciplinary skills acquired through such synergistic learning opportunities, but to also acquire key collaborative learning and problem-solving skills. In this paper, we describe the design and implementation of a collaborative learning-by-modeling environment developed for high school physics classrooms. We develop systematic rubrics and discuss the results of key evaluation schemes to analyze collaborative synergistic learning of physics and CT concepts and practices.more » « less
-
Along with the rise of domain‐specific computing (ASICs hardware) and domain‐specific programming languages, we envision that the next step is the emergence of domain‐specific cloud platforms. Considering multimedia streaming as one of the most trendy applications in the IT industry, the goal of this study is to develop serverless multimedia streaming engine (SMSE), the first domain‐specific serverless platform for multimedia streaming. SMSE democratizes multimedia service development via enabling content providers (or even end‐users) to rapidly develop their desired functionalities on their multimedia contents. Upon developing SMSE, the next goal of this study is to deal with its efficiency challenges and develop a function container provisioning method that can efficiently utilize cloud resources and improve the users' quality of service. In particular, we develop a dynamic method that provisions durable or ephemeral containers depending on the spatiotemporal and data‐dependency characteristics of the functions. Evaluating the prototype implementation of SMSE under real‐world settings demonstrates its capability to reduce both the containerization overhead, and the makespan time of serving multimedia processing functions (by up to 30%) in compare to the function provision methods that are being used in the general‐purpose serverless cloud systems.more » « less
-
The use of non-traditional computing devices is growing rapidly. One paradigm of interest is chemical reaction networks (CRNs) which can model and use chemical interactions for computation. These CRNs are used to develop programs at the nanoscale for applications such as intelligent drug delivery. In practice, these programs are developed in simulation environments, and then compiled into physical systems. A challenge when designing CRNs for computation is the lack of techniques to verify and validate correctness. In this work, we adapt software testing and repair techniques for use in this domain. In initial work, we designed a testing framework to handle the challenges presented by CRN programs; this includes distributed computation and stochastic behavior. We extended this framework to implement automated program repair of CRN models and automated test generation via program invariants. For future work, we will develop a notion of fault localization for these programs, develop a theory of mutation generation, and address issues regarding flakiness present in this computing paradigm.more » « less
An official website of the United States government

