Abstract Plastic litter is accumulating in ecosystems worldwide. Rivers are a major source of plastic litter to oceans. However, rivers also retain and transform plastic pollution. While methods for calculating particle transport dynamics in rivers are well established, they are infrequently used to quantify the transport and retention of microplastics (i.e., particles < 5 mm) in flowing waters. Measurements of microplastic movement in rivers are needed for a greater understanding of the fate of plastic litter at watershed and global scales, and to inform pollution prevention strategies. Our objectives were to (1) quantify the abundance of microplastics within different river habitats and (2) adapt organic matter “spiraling” metrics to measure microplastic transport concurrent with fine particulate organic matter (FPOM). We quantified microplastic and FPOM abundance across urban river habitats (i.e., surface water, water column, benthos), and calculated downstream particle velocity, index of retention, turnover rate, and spiraling length for both particle types. Microplastic standing stock was assessed using a habitat‐specific approach, and estimates were scaled up to encompass the study reach. Spatial distribution of particles demonstrated that microplastics and FPOM were retained together, likely by hydrodynamic forces that facilitate particle sinking or resuspension. Microplastic particles had a higher downstream particle velocity and lower index of retention relative to FPOM, suggesting that microplastics were retained to a lesser degree than FPOM in the study reaches. Microplastics also showed lower turnover rates and longer spiraling lengths relative to FPOM, attributed to the slow rates of plastic degradation. Thus, rivers are less retentive of microplastics than FPOM, although both particles are retained in similar locations. Because microplastics are resistant to degradation, individual particles can be transported longer distances prior to mineralization than FPOM, making it likely that microplastic particles will encounter larger bodies of water and interact with various aquatic biota in the process. These empirical assessments of particle transport will be valuable for understanding the fate and transformation of microplastic particles in freshwater resources and ultimately contribute to the refinement of global plastic budgets.
more »
« less
Microplastic deposition velocity in streams follows patterns for naturally occurring allochthonous particles
Abstract Accumulation of plastic litter is accelerating worldwide. Rivers are a source of microplastic (i.e., particles <5 mm) to oceans, but few measurements of microplastic retention in rivers exist. We adapted spiraling metrics used to measure particulate organic matter transport to quantify microplastic deposition using an outdoor experimental stream. We conducted replicated pulse releases of three common microplastics: polypropylene pellets, polystyrene fragments, and acrylic fibers, repeating measurements using particles with and without biofilms. Depositional velocity (v dep ; mm/s) patterns followed expectations based on density and biofilm ‘stickiness’, where v dep was highest for fragments, intermediate for fibers, and lowest for pellets, with biofilm colonization generally increasing v dep . Comparing microplastic v dep to values for natural particles (e.g., fine and coarse particulate organic matter) showed that particle diameter was positively related to v dep and negatively related to the ratio of v dep to settling velocity (i.e., sinking rate in standing water). Thus, microplastic v dep in rivers can be quantified with the same methods and follows the same patterns as natural particles. These data are the first measurements of microplastic deposition in rivers, and directly inform models of microplastic transport at the landscape scale, making a key contribution to research on the global ecology of plastic waste.
more »
« less
- Award ID(s):
- 1552825
- PAR ID:
- 10463507
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plastic is pervasive in modern economies and ecosystems. Freshwater fish ingest microplastics (i.e., particles <5 mm), but no studies have examined historical patterns of their microplastic consumption. Measuring the patterns of microplastic pollution in the past is critical for predicting future trends and for understanding the relationship between plastics in fish and the environment. We measured microplastics in digestive tissues of specimens collected from the years 1900–2017 and preserved in museum collections. We collected new fish specimens in 2018, along with water and sediment samples. We selected four species:Micropterus salmoides(largemouth bass),Notropis stramineus(sand shiner),Ictalurus punctatus(channel catfish), andNeogobius melanostomus(round goby) because each was well represented in museum collections, are locally abundant, and collected from urban habitats. For each individual, we dissected the digestive tissue from esophagus to anus, subjected tissue to peroxide oxidation, examined particles under a dissecting microscope, and used Raman spectroscopy to characterize the particles' chemical composition. No microplastics were detected in any fish prior to 1950. From mid‐century to 2018, microplastic concentrations showed a significant increase when data from all fish were considered together. All detected particles were fibers, and represented plastic polymers (e.g., polyester) along with mixtures of natural and synthetic textiles. For the specimens collected in 2018, microplastics in fish and sediment showed similar patterns across study sites, while water column microplastics showed no differences among locations. Overall, plastic pollution in common freshwater fish species is increasing and pervasive across individuals and species, and is likely related to changes in environmental concentrations. Museum specimens are an overlooked source for assessing historical patterns of microplastic pollution, and for predicting future trends in freshwater fish, thereby helping to sustain the health of commercial and recreational fisheries worldwide.more » « less
-
Abstract Zooplankton contribute a major component of the vertical flux of particulate organic matter to the ocean interior by packaging consumed food and waste into large, dense fecal pellets that sink quickly. Existing methods for quantifying the contribution of fecal pellets to particulate organic matter use either visual identification or lipid biomarkers, but these methods may exclude fecal material that is not morphologically distinct, or may include zooplankton carcasses in addition to fecal pellets. Based on results from seven pairs of wild‐caught zooplankton and their fecal pellets, we assess the ability of compound‐specific isotope analysis of amino acids (CSIA‐AA) to chemically distinguish fecal pellets as an end‐member material within particulate organic matter. Nitrogen CSIA‐AA is an improvement on previous uses of bulk stable isotope ratios, which cannot distinguish between differences in baseline isotope ratios and fractionation due to metabolic processing. We suggest that the relative trophic position of zooplankton and their fecal pellets, as calculated using CSIA‐AA, can provide a metric for estimating the dietary absorption efficiency of zooplankton. Using this metric, the zooplankton examined here had widely ranging dietary absorption efficiencies, where lower dietary absorption may equate to higher proportions of fecal packaging of undigested material. The nitrogen isotope ratios of threonine and alanine statistically distinguished the zooplankton fecal pellets from literature‐derived examples of phytoplankton, zooplankton biomass, and microbially degraded organic matter. We suggest that δ15N values of threonine and alanine could be used in mixing models to quantify the contribution of fecal pellets to particulate organic matter.more » « less
-
Abstract Plastic litter is a globally pervasive pollutant. Storms are likely key drivers of plastic transport to oceans, but plastic transport during rising and falling limbs of storm hydrographs is rarely measured. Measurements of plastic movement throughout individual storms will improve watershed models of plastic dynamics. We used cameras to quantify macroplastic movement (i.e., particles > 5 mm) in rivers before, during, and after individual storms (N = 18) at 10 sites within three North American watersheds. Most storms showed no difference in macroplastic transport between rising and falling hydrograph limbs or evidence of hysteresis (transport rate range = 0–236 items/30 min). Total macroplastic exported during storm events was positively related to storm magnitude and was greatest at more urban sites. Thus, macroplastic transport during storms was driven by storm size and land use. The quantitative relationships between macroplastic movement and hydrology will improve discharge‐weighted calculations of macroplastic transport which can benefit modeling, monitoring, and mitigation efforts. Practitioner PointsMacroplastic particles (i.e, > 5 mm) are both retained in urban streams (e.g., in debris dams), and move downstream during baseflow and stormflow conditionsStorm flows are key periods of macroplastic transport: transport rates are higher on both rising and falling limbs of storm hydrographs relative to baseflow.The amount of macroplastics moving during storm flows is positively related to storm intensity.The predictive relationships generated between storm flow and macroplastic transport will improve estimates of annual export, and policies for macroplastic pollution reduction.more » « less
-
Abstract Microplastics (particles <5 mm) are commonly found in aquatic organisms across taxonomic groups and ecosystems. However, the egestion rate of microplastics from aquatic organisms and how egestion rates compare to other rates of microplastic movement in the environment are sparsely documented. We fed microplastic fibres to round gobies ( Neogobius melanostomus ), an abundant, invasive species in the Laurentian Great Lakes. We conducted two trials where round gobies were fed microplastic‐containing food either a single time (1 day) or every day over 7 days. There was no difference in microplastic egestion rates from the 1 day or 7 day feeding trials, suggesting no impact of duration of exposure on egestion (exponential decay rate = −0.055 [±0.016 SE ] and −0.040 [±0.007 SE ], respectively). Turnover time of microplastics (i.e., average time from ingestion to egestion) in the gut ranged from 18.2 to 25.0 hr, similar to published values for other freshwater taxa. We also measured microplastics in the digestive tracts of round gobies collected directly from Lake Michigan, U.S.A. Using published values for round goby density and microplastic concentration at the study sites, we calculated areal egestion rate by round gobies (no. particles m –2 day –1 ), and compared it to riverine microplastic export (no. particles m –2 day –1 ). Both area‐based rates were of the same order of magnitude, suggesting that round goby egestion could be an important, and potentially overlooked component of microplastic dynamics at the ecosystem scale. Animal egestion is well‐known as a major component of nutrient and carbon cycling. However, direct measurements of microplastic fluxes in the environment that include animal egestion rates are uncommon. An ecosystem ecology approach is needed to meet the emerging challenge of generating microplastic budgets for freshwater environments and elsewhere, thereby informing management and mitigation of plastic pollution at a global scale.more » « less
An official website of the United States government

