skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Sociotechnical Systems View of Catalysts that Enable Underrepresented Minority Student Success
Academic institutions in the US have recently refocused their attention on Diversity, Equity, and Inclusion. This panel consisting of engineering faculty, administrators and industry professionals will discuss how colleges of engineering can approach the problem of recruiting, retaining, and graduating undergraduate underrepresented minority (URM) students by using a sociotechnical systems modeling approach. The main thrust of the discussion is how an academic organizational system such as a college of engineering can be broken down into a social system consisting of the people (students, faculty, staff and other stakeholders), and a technical system consisting of programs and initiatives for URM student success. Joint analyses of the social system and the technical system can then reveal systemwide barriers and opportunities for enabling URM student success.  more » « less
Award ID(s):
2042363
PAR ID:
10463524
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
66
Issue:
1
ISSN:
2169-5067
Page Range / eLocation ID:
126 to 129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The overall objective of this project funded by the NSF-IUSE program is to employ a sociotechnical systems lens and framework and identify and evaluate organization-wide capacities and change catalysts in a predominantly white institution's college of engineering. The college of engineering is viewed as a sociotechnical organization with social and technical subsystems. The social subsystem models who talks to whom about what. The technical subsystem models the main activities and programs in the organization. Our project aims to: (1) assess the technical system’s capacity to support recruitment and retention through a technical system analysis; (2) assess the social system’s capacity to support recruitment and retention through a social system analysis; and (3) generate systemwide catalysts for URM student success. We conducted semi-structured hour-long interviews with 38 stakeholders including students, faculty, administrators and staff from various departments and student organizations within and outside the college. We are qualitatively analyzing the interview data to identify technical and social system barriers and enablers. Data analysis is ongoing, but our preliminary findings and insights are as follows: (1) social system barriers for URM students were interactions with peers in classroom environment (leading to a sense of isolation and a lack of belonging), interactions with faculty and staff especially in relating to their needs and being empathetic, and familial concerns and being able to support their family financially. (2) interactions with their friends was the top social system enabler for URM students. Family also provided them comfort and solace while attending to the rigors of college. They also felt that living at home would alleviate some of the financial burdens they faced. (3) the lack in numbers (and hence the lack of diversity and identity), curricular and instructional methods, and high school preparation were cited as the most important technical system barriers these students faced. (4) students identified as technical system enablers the professional development opportunities they had, their participation in students organizations, particularly in identity-based organizations such as NSBE, SHPE and WISE, and how that helped them forge new contacts and provided emotional support during their stay here. (5) there is recognition among the administrators and the staff working with URM students that diversity is important in the student body and that the mission of enabling URM student success is important, although the mission itself with respect to URM students is somewhat poorly defined and understood. 
    more » « less
  2. Although institutions of higher education have placed a large emphasis on increasing the number of underrepresented minority (URM) students matriculating in higher education, the disparities in STEM retention and graduation rates between URM and non-URM students emphasize the dire need for increased support to help URM students navigate challenges including stereotype threat, impostor phenomenon, and lack of social connectedness that disproportionately affect URM students in majority-dominated fields. Prior research has demonstrated that structured mentoring has the potential to generate substantial improvements in academic, social, and career outcomes for URM STEM students. In particular, network-based mentoring approaches that allow for students to receive both professional and peer mentoring, as well as the opportunity to mentor other students, have demonstrated success in this realm. In this article, we discuss how the current state of academia often fails URM STEM students and faculty, review literature regarding the ways in which structured mentoring approaches can alleviate barriers to success among URM groups in STEM fields, and offer recommendations regarding how academic institutions can successfully implement holistic student and faculty mentoring programs. 
    more » « less
  3. In this paper, we present the Systems Engineering Initiative for Student Success (SEISS) framework we are developing for enabling educational organizations to scan, evaluate and transform their operations to achieve their diversity, equity, and inclusion goals in student recruitment, retention, and graduation. The underlying structure and logic in our SEISS framework is that an organization such as a college of engineering is a sociotechnical system (STS) consisting of a social subsystem and a technical subsystem. The social subsystem consists of people, their roles and is a model of who talks to whom about what. The technical subsystem consists of all the activities, programs, policies, and operations that help the organization achieve its goals. In a sociotechnical system, the social and technical subsystems are interdependent in their functioning, and they must be jointly optimized from an organizational design perspective. Our SEISS framework which views a college or a similar organizational unit as a sociotechnical system lends the organizational designer a unique systems lens with which to view, analyze and design the operations and organize the capacities and resources in the college. The systems lens views an organizational unit, its sub-systems, components, and its corresponding capacities not in isolation, but as entities that interact with each other. With support from an NSF IUSE grant, we have been developing the SEISS framework and have piloted the framework in a predominantly white college of engineering to identify existing and potential technical and social system capacities for underrepresented minority (URM) students to succeed in the college. Preliminary results from our qualitative analyses of URM student interviews reveal the utility of the SEISS framework and the STS lens in unearthing the barriers and enablers for these students in the social and technical subsystems in the college. We also model the interactions between the social and technical subsystem elements in the SEISS framework, revealing latent opportunities for leveraging the connections between the social and technical subsystem capacities and resources. 
    more » « less
  4. Three diverse public universities(North Carolina State University, University of North Carolina Charlotte, and North Carolina Agricultural and Technical State University)have adapted and implemented an institutional change model that proposes five core elements for achieving cultural change in colleges and universities to increase the percentage of underrepresented minority (URM) faculty in STEM fields. Since URM doctoral students spend most of their time exposed to the culture of their academic department as they take classes, conduct research, and interact with departmental faculty, staff, and other graduate students, the climate they experience and the support they receive at the departmental level can have a major impact on their success. When interventions address students directly, once they graduate, there may be no lasting change in the department. However, when faculty attitudes and mentoring practices along with departmental processes and procedures change, the changes are likely to be more sustainable. Using institutional theory as the analytical lens, the purpose of this paper is to examine how one collaborative project implements a faculty-led institutional change model for diversifying the STEM professoriate. Each participating doctoral granting department has a volunteer faculty member interested in URM success designated as a Faculty Fellow. The Fellow receives programmatic support to increase their understanding of the issues facing URMs in doctoral programs and assessment support to identify the departmental practices that may be hindering URM student success. Together with their department head and director of graduate programs, they work with the departmental faculty to understand graduate student pathways, identify practices and policies that promote success, and diagnose trouble spots. Based on this study of the graduate student experience in their own department, the Fellow develops a departmental initiative designed to address departmental weaknesses. The faculty as a whole develop a departmental diversity plan to build these insights into departmental practices and procedures. This paper will explore the process of developing the departmental initiatives and diversity plans as well as report on some initiatives and plans developed. The benefits and drawbacks of the approach are discussed along with best practices identified to this point 
    more » « less
  5. Several studies have shown that underrepresented minorities (URM) (African Americans, Native Americans, Pacific Islanders, and Latinos) are more likely to drop out of engineering doctorate programs before graduation compared to international and majority students. In addition, transitioning into the doctoral programs without having a good understanding of what it entails can make the PhD experience difficult. To address this issue, a team of researchers from four US universities developed a project called “the Rising Doctoral Institute (RDI)’’. One of the research goals of this project is to better understand how factors in the academic system interact dynamically to influence (i.e., support or hinder) incoming URM students’ access, success, persistence, and retention in engineering doctoral programs. To accomplish this goal, we will use a comprehensive analysis approach known as System Dynamic Model (SDM). This work-In-Progress article represents the starting point to develop this model and its overall goal is to conduct a systematic literature review to identify the factors in the academic system that impact URM students’ experience in doctoral engineering programs. We followed a process suggested by Okoli and Schabram [1] which consists of four major steps. The first step is presenting the purpose of the literature review, protocol, and training. The second step consists of selecting the literature and practical screen. The next step is the quality appraisal and data extraction. Finally, the analysis of findings and writing the review. By identifying the factors and the relation between them, we could help ensure a more diverse and equitable STEM education. Although some external factors can affect students’ access, success, persistence and retention in engineering PhD programs, this study is limited to exploring the factors and interactions within the academic system that can potentially impact the successful experience of underrepresented minorities in PhD programs in engineering such as Advisor-Advisee Relationship, Student’s Experience, Academic Support and Faculty-Students Interaction 
    more » « less