skip to main content


Title: Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning
Abstract

Designing and printing metamaterials with customizable architectures enables the realization of unprecedented mechanical behaviors that transcend those of their constituent materials. These behaviors are recorded in the form of response curves, with stress-strain curves describing their quasi-static footprint. However, existing inverse design approaches are yet matured to capture the full desired behaviors due to challenges stemmed from multiple design objectives, nonlinear behavior, and process-dependent manufacturing errors. Here, we report a rapid inverse design methodology, leveraging generative machine learning and desktop additive manufacturing, which enables the creation of nearly all possible uniaxial compressive stress‒strain curve cases while accounting for process-dependent errors from printing. Results show that mechanical behavior with full tailorability can be achieved with nearly 90% fidelity between target and experimentally measured results. Our approach represents a starting point to inverse design materials that meet prescribed yet complex behaviors and potentially bypasses iterative design-manufacturing cycles.

 
more » « less
Award ID(s):
2119643
NSF-PAR ID:
10463631
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mechanical behavior of lattice structures is important for a range of engineering applications. Herein, a new semiempirical model is proposed that describes the entire range of stress–strain response of lattice structures, including the stress‐instability region which is modeled as an oscillator. The model can be fit to individual stress–strain curves to extract elastic modulus, yield stress, collapse stress, post‐yield collapse ratio, densification strain, and the energy absorbed per unit volume. The model is fit to 119 unique experimental stress–strain curves from 13 research papers in literature covering four different lattice designs, namely, octet truss, body‐centered cubic with vertical members, body‐centered cubic, and hexagonal. Manufacturing methods (additive and conventional) and materials (metals and polymers) were also included in the analysis. The fitted model yields several new insights into the compression behavior of previously tested lattice structures and can be applied to additional lattice designs. Among other results, analysis of variance (ANOVA) reveals that the octet truss lattice demonstrates the highest post‐yield collapse ratio and the smallest normalized energy absorption per unit volume amongst the lattice structures investigated. The proposed model is a powerful tool for designers to quantitatively compare and select 3D lattice structures with the desired mechanical characteristics.

     
    more » « less
  2. Abstract

    Digital Light Processing (DLP) 3D printing enables the creation of hierarchical complex structures with specific micro‐ and macroscopic architectures that are impossible to achieve through traditional manufacturing methods. Here, this hierarchy is extended to the mesoscopic length scale for optimized devices that dissipate mechanical energy. A photocurable, thus DLP‐printable main‐chain liquid crystal elastomer (LCE) resin is reported and used to print a variety of complex, high‐resolution energy‐dissipative devices. Using compressive mechanical testing, the stress–strain responses of 3D‐printed LCE lattice structures are shown to have 12 times greater rate‐dependence and up to 27 times greater strain–energy dissipation compared to those printed from a commercially available photocurable elastomer resin. The reported behaviors of these structures provide further insight into the much‐overlooked energy‐dissipation properties of LCEs and can inspire the development of high‐energy‐absorbing device applications.

     
    more » « less
  3. Additive manufacturing has been recognized as an industrial technological revolution for manufacturing, which allows fabrication of materials with complex three-dimensional (3D) structures directly from computer-aided design models. Using two or more constituent materials with different physical and mechanical properties, it becomes possible to construct interpenetrating phase composites (IPCs) with 3D interconnected structures to provide superior mechanical properties as compared to the conventional reinforced composites with discrete particles or fibers. The mechanical properties of IPCs, especially response to dynamic loading, highly depend on their 3D structures. In general, for each specified structural design, it could take hours or days to perform either finite element analysis (FEA) or experiments to test the mechanical response of IPCs to a given dynamic load. To accelerate the physics-based prediction of mechanical properties of IPCs for various structural designs, we employ a deep neural operator (DNO) to learn the transient response of IPCs under dynamic loading as surrogate of physics-based FEA models. We consider a 3D IPC beam formed by two metals with a ratio of Young’s modulus of 2.7, wherein random blocks of constituent materials are used to demonstrate the generality and robustness of the DNO model. To obtain FEA results of IPC properties, 5000 random time-dependent strain loads generated by a Gaussian process kennel are applied to the 3D IPC beam, and the reaction forces and stress fields inside the IPC beam under various loading are collected. Subsequently, the DNO model is trained using an incremental learning method with sequence-to-sequence training implemented in JAX, leading to a 100X speedup compared to widely used vanilla deep operator network models. After an offline training, the DNO model can act as surrogate of physics-based FEA to predict the transient mechanical response in terms of reaction force and stress distribution of the IPCs to various strain loads in one second at an accuracy of 98%. Also, the learned operator is able to provide extended prediction of the IPC beam subject to longer random strain loads at a reasonably well accuracy. Such superfast and accurate prediction of mechanical properties of IPCs could significantly accelerate the IPC structural design and related composite designs for desired mechanical properties. 
    more » « less
  4. Abstract Structural components such as printed circuit boards (PCBs) are critical in the thermomechanical reliability assessment of electronic packages. Previous studies have shown that geometric parameters such as thickness and mechanical properties like elastic modulus of PCBs have direct influence on the reliability of electronic packages. Elastic material properties of PCBs are commonly characterized using equipment such as tensile testers and used in computational studies. However, in certain applications viscoelastic material properties are important. Viscoelastic influence on materials is evident when one exceeds the glass transition temperature of materials. Operating conditions or manufacturing conditions such as lamination and soldering may expose components to temperatures that exceed the glass transition temperatures. Knowing the viscoelastic behavior of the different components of electronic packages is important in order to perform accurate reliability assessment and design components such as printed circuit boards (PCBs) that will remain dimensionally stable after the manufacturing process. Previous researchers have used creep and stress relaxation test data to obtain the Prony series terms that represent the viscoelastic behavior and perform analysis. Others have used dynamic mechanical analysis in order to obtain frequency domain master curves that were converted to time domain before obtaining the Prony series terms. In this paper, nonlinear solvers were used on frequency domain master curve results from dynamic mechanical analysis to obtain Prony series terms and perform finite element analysis on the impact of adding viscoelastic properties when performing reliability assessment. The computational study results were used to perform comparative assessment to understand the impact of including viscoelastic behavior in reliability analysis under thermal cycling and drop testing for Wafer Level Chip Scale Packages. 
    more » « less
  5. Abstract

    Direct ink writing (DIW) process is a facile additive manufacturing technology to fabricate three-dimensional (3D) objects with various materials. Its versatility has attracted considerable interest in academia and industry in recent years. As such, upsurging endeavors are invested in advancing the ink flow behaviors in order to optimize the process resolution and the printing quality. However, so far, the physical phenomena during the DIW process are not revealed in detail, leaving a research gap between the physical experiments and its underlying theories. Here, we present a comprehensive analytical study of non-Newtonian ink flow behavior during the DIW process. Different syringe-nozzle geometries are modeled for the comparative case studies. By using the computational fluid dynamics (CFD) simulation method, we reveal the shear-thinning property during the ink extrusion process. Besides, we study the viscosity, shear stress, and velocity fields, and analyze the advantages and drawbacks of each syringe-nozzle model. On the basis of these investigations and analyses, we propose an improved syringe-nozzle geometry for stable extrusion and high printing quality. A set of DIW printing experiments and rheological characterizations are carried out to verify the simulation studies. The results developed in this work offer an in-depth understanding of the ink flow behavior in the DIW process, providing valuable guidelines for optimizing the physical DIW configuration toward high-resolution printing and, consequently, improving the performance of DIW-printed objects.

     
    more » « less