skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inverse radiative transfer with goal-oriented hp-adaptive mesh refinement: adaptive-mesh inversion
Abstract The inverse problem for radiative transfer is important in many applications, such as optical tomography and remote sensing. Major challenges include large memory requirements and computational expense, which arise from high-dimensionality and the need for iterations in solving the inverse problem. Here, to alleviate these issues, we propose adaptive-mesh inversion: a goal-orientedhp-adaptive mesh refinement method for solving inverse radiative transfer problems. One novel aspect here is that the two optimizations (one for inversion, and one for mesh adaptivity) are treated simultaneously and blended together. By exploiting the connection between duality-based mesh adaptivity and adjoint-based inversion techniques, we propose a goal-oriented error estimator, which is cheap to compute, and can efficiently guide the mesh-refinement to numerically solve the inverse problem. We use discontinuous Galerkin spectral element methods to discretize the forward and the adjoint problems. Then, based on the goal-oriented error estimator, we propose anhp-adaptive algorithm to refine the meshes. Numerical experiments are presented at the end and show convergence speed-up and reduced memory occupation by the goal-oriented mesh adaptive method.  more » « less
Award ID(s):
2324368
PAR ID:
10463635
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Inverse Problems
Volume:
39
Issue:
11
ISSN:
0266-5611
Page Range / eLocation ID:
Article No. 115002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An adaptive mesh refinement method for numerically solving optimal control problems is developed using Legendre-Gauss-Radau direct collocation. In regions of the solution where the desired accuracy tolerance has not been met, the mesh is refined by either increasing the degree of the approximating polynomial in a mesh interval or dividing a mesh interval into subintervals. In regions of the solution where the desired accuracy tolerance has been met, the mesh size may be reduced by either merging adjacent mesh intervals or decreasing the degree of the approximating polynomial in a mesh interval. Coupled with the mesh refinement method described in this paper is a newly developed relative error estimate that is based on the differences between solutions obtained from the collocation method and those obtained by solving initial-value and terminal-value problems in each mesh interval using an interpolated control obtained from the collocation method. Because the error estimate is based on explicit simulation, the solution obtained via collocation is in close agreement with the solution obtained via explicit simulation using the control on the final mesh, which ensures that the control is an accurate approximation of the true optimal control. The method is demonstrated on three examples from the open literature, and the results obtained show an improvement in final mesh size when compared against previously developed mesh refinement methods. 
    more » « less
  2. The phase field method is becoming the de facto choice for the numerical analysis of complex problems that involve multiple initiating, propagating, interacting, branching and merging fractures. However, within the context of finite element modelling, the method requires a fine mesh in regions where fractures will propagate, in order to capture sharp variations in the phase field representing the fractured/damaged regions. This means that the method can become computationally expensive when the fracture propagation paths are not known a priori. This paper presents a 2D hp-adaptive discontinuous Galerkin finite element method for phase field fracture that includes a posteriori error estimators for both the elasticity and phase field equations, which drive mesh adaptivity for static and propagating fractures. This combination means that it is possible to be reliably and efficiently solve phase field fracture problems with arbitrary initial meshes, irrespective of the initial geometry or loading conditions. This ability is demonstrated on several example problems, which are solved using a light-BFGS (Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton algorithm. The examples highlight the importance of driving mesh adaptivity using both the elasticity and phase field errors for physically meaningful, yet computationally tractable, results. They also reveal the importance of including p-refinement, which is typically not included in existing phase field literature. The above features provide a powerful and general tool for modelling fracture propagation with controlled errors and degree-of-freedom optimised meshes. 
    more » « less
  3. In this article, we present a three-dimensional anisotropic hp-mesh refinement strategy for ultraweak discontinuous Petrov-Galerkin (DPG) formulations with optimal test functions. The refinement strategy utilizes the built-in residual-based error estimator accompanying the DPG discretization. The refinement strategy is a two-step process: (a) use the built-in error estimator to mark and isotropically hp-refine elements of the (coarse) mesh to generate a finer mesh; (b) use the reference solution on the finer mesh to compute optimal ℎ-and 𝑝-refinements of the selected elements in the coarse mesh. The process is repeated with coarse and fine mesh being generated in every adaptation cycle, until a prescribed error tolerance is achieved. We demonstrate the performance of the proposed refinement strategy using several numerical examples on hexahedral meshes. 
    more » « less
  4. An adaptive mesh refinement method for nu- merically solving optimal control problems is described. The method employs collocation at the Legendre-Gauss-Radau points. Within each mesh interval, a relative error estimate is derived based on the difference between the Lagrange polynomial approximation of the state and an adaptive forward- backward explicit integration of the state dynamics. Accuracy in the method is achieved by adjusting the number of mesh intervals and degree of the approximating polynomial in each mesh interval. The method is demonstrated on time-optimal transfers from an L1 halo orbit to an L2 halo orbit in the Earth- Moon system, and performance is compared against previously developed mesh refinement methods. 
    more » « less
  5. null (Ed.)
    A general-purpose C++ software program called CGPOPS is described for solving multiple-phase optimal control problems using adaptive direct orthogonal collocation methods. The software employs a Legendre-Gauss-Radau direct orthogonal collocation method to transcribe the continuous optimal control problem into a large sparse nonlinear programming problem (NLP). A class of hp mesh refinement methods are implemented that determine the number of mesh intervals and the degree of the approximating polynomial within each mesh interval to achieve a specified accuracy tolerance. The software is interfaced with the open source Newton NLP solver IPOPT. All derivatives required by the NLP solver are computed via central finite differencing, bicomplex-step derivative approximations, hyper-dual derivative approximations, or automatic differentiation. The key components of the software are described in detail, and the utility of the software is demonstrated on five optimal control problems of varying complexity. The software described in this article provides researchers a transitional platform to solve a wide variety of complex constrained optimal control problems. 
    more » « less