ABSTRACT This work proposes a novel approach for coupling non‐isothermal fluid dynamics with fracture mechanics to capture thermal effects within fluid‐filled fractures accurately. This method addresses critical aspects of calculating fracture width in enhanced geothermal systems, where the temperature effects of fractures are crucial. The proposed algorithm features an iterative coupling between an interface‐capturing phase‐field fracture method and interface‐tracking thermo‐fluid‐structure interaction using arbitrary Lagrangian–Eulerian coordinates. We use a phase‐field approach to represent fractures and reconstruct the geometry to frame a thermo‐fluid‐structure interaction problem, resulting in pressure and temperature fields that drive fracture propagation. We developed a novel phase‐field interface model accounting for thermal effects, enabling the coupling of quantities specific to the fluid‐filled fracture with the phase‐field model through the interface between the fracture and the intact solid domain. We provide several numerical examples to demonstrate the capabilities of the proposed algorithm. In particular, we analyze mesh convergence of our phase‐field interface model, investigate the effects of temperature on crack width and volume in a static regime, and highlight the method's potential for modeling slowly propagating fractures.
more »
« less
An hp-adaptive discontinuous Galerkin method for phase field fracture
The phase field method is becoming the de facto choice for the numerical analysis of complex problems that involve multiple initiating, propagating, interacting, branching and merging fractures. However, within the context of finite element modelling, the method requires a fine mesh in regions where fractures will propagate, in order to capture sharp variations in the phase field representing the fractured/damaged regions. This means that the method can become computationally expensive when the fracture propagation paths are not known a priori. This paper presents a 2D hp-adaptive discontinuous Galerkin finite element method for phase field fracture that includes a posteriori error estimators for both the elasticity and phase field equations, which drive mesh adaptivity for static and propagating fractures. This combination means that it is possible to be reliably and efficiently solve phase field fracture problems with arbitrary initial meshes, irrespective of the initial geometry or loading conditions. This ability is demonstrated on several example problems, which are solved using a light-BFGS (Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton algorithm. The examples highlight the importance of driving mesh adaptivity using both the elasticity and phase field errors for physically meaningful, yet computationally tractable, results. They also reveal the importance of including p-refinement, which is typically not included in existing phase field literature. The above features provide a powerful and general tool for modelling fracture propagation with controlled errors and degree-of-freedom optimised meshes.
more »
« less
- Award ID(s):
- 1847173
- PAR ID:
- 10495679
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Computer Methods in Applied Mechanics and Engineering
- Volume:
- 416
- Issue:
- C
- ISSN:
- 0045-7825
- Page Range / eLocation ID:
- 116336
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we review and describe our computational framework for solving multiphysics phase-field fracture problems in porous media. Therein, the following five coupled nonlinear physical models are addressed: displacements (geo-mechanics), a phase-field variable to indicate the fracture position, a pressure equation (to describe flow), a proppant concentration equation, and/or a saturation equation for two-phase fracture flow, and finally a finite element crack width problem. The overall coupled problem is solved with a staggered solution approach, known in subsurface modeling as the fixed-stress iteration. A main focus is on physics-based discretizations. Galerkin finite elements are employed for the displacement-phase-field system and the crack width problem. Enriched Galerkin formulations are used for the pressure equation. Further enrichments using entropy-vanishing viscosity are employed for the proppant and/or saturation equations. A robust and efficient quasi-monolithic semi-smooth Newton solver, local mesh adaptivity, and parallel implementations allow for competitive timings in terms of the computational cost. Our framework can treat two- and three-dimensional realistic field and laboratory examples. The resulting program is an in-house code named IPACS (Integrated Phase-field Advanced Crack Propagation Simulator) and is based on the finite element library deal.II. Representative numerical examples are included in this document.more » « less
-
Summary We present an algorithm to simulate curvilinear hydraulic fractures in plane strain and axisymmetry. We restrict our attention to sharp fractures propagating in an isotropic, linear elastic medium and driven by the injection of a laminar, Newtonian fluid governed by lubrication theory, and we require the existence of a finite lag region between the fluid front and the crack tip. The key novelty of our approach is in how we discretize the evolving crack and fluid domains: we utilize universal meshes (UMs), a technique to create conforming triangulations of a problem domain by only perturbing nodes of a universal background mesh in the vicinity of the boundary. In this way, we construct meshes, which conform to the crack and to the fluid front. This allows us to build standard piecewise linear finite element spaces and to monolithically solve the quasistatic hydraulic fracture problem for the displacement field in the rock and the pressure in the fluid. We demonstrate the performance of our algorithms through three examples: a convergence study in plane strain, a comparison with experiments in axisymmetry, and a novel case of a fracture in a narrow pay zone.more » « less
-
Abstract Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted meshes, immersed boundary methods instead embed the computational domain in a structured background grid. Interpolation-based immersed boundary methods augment existing finite element software to non-invasively implement immersed boundary capabilities through extraction. Extraction interpolates the structured background basis as a linear combination of Lagrange polynomials defined on a foreground mesh, creating an interpolated basis that can be easily integrated by existing methods. This work extends the interpolation-based immersed isogeometric method to multi-material and multi-physics problems. Beginning from level-set descriptions of domain geometries, Heaviside enrichment is implemented to accommodate discontinuities in state variable fields across material interfaces. Adaptive refinement with truncated hierarchically refined B-splines (THB-splines) is used to both improve interface geometry representations and to resolve large solution gradients near interfaces. Multi-physics problems typically involve coupled fields where each field has unique discretization requirements. This work presents a novel discretization method for coupled problems through the application of extraction, using a single foreground mesh for all fields. Numerical examples illustrate optimal convergence rates for this method in both 2D and 3D, for partial differential equations representing heat conduction, linear elasticity, and a coupled thermo-mechanical problem. The utility of this method is demonstrated through image-based analysis of a composite sample, where in addition to circumventing typical meshing difficulties, this method reduces the required degrees of freedom when compared to classical boundary-fitted finite element methods.more » « less
-
Abstract The inverse problem for radiative transfer is important in many applications, such as optical tomography and remote sensing. Major challenges include large memory requirements and computational expense, which arise from high-dimensionality and the need for iterations in solving the inverse problem. Here, to alleviate these issues, we propose adaptive-mesh inversion: a goal-orientedhp-adaptive mesh refinement method for solving inverse radiative transfer problems. One novel aspect here is that the two optimizations (one for inversion, and one for mesh adaptivity) are treated simultaneously and blended together. By exploiting the connection between duality-based mesh adaptivity and adjoint-based inversion techniques, we propose a goal-oriented error estimator, which is cheap to compute, and can efficiently guide the mesh-refinement to numerically solve the inverse problem. We use discontinuous Galerkin spectral element methods to discretize the forward and the adjoint problems. Then, based on the goal-oriented error estimator, we propose anhp-adaptive algorithm to refine the meshes. Numerical experiments are presented at the end and show convergence speed-up and reduced memory occupation by the goal-oriented mesh adaptive method.more » « less
An official website of the United States government

