skip to main content


Title: An hp-adaptive discontinuous Galerkin method for phase field fracture
The phase field method is becoming the de facto choice for the numerical analysis of complex problems that involve multiple initiating, propagating, interacting, branching and merging fractures. However, within the context of finite element modelling, the method requires a fine mesh in regions where fractures will propagate, in order to capture sharp variations in the phase field representing the fractured/damaged regions. This means that the method can become computationally expensive when the fracture propagation paths are not known a priori. This paper presents a 2D hp-adaptive discontinuous Galerkin finite element method for phase field fracture that includes a posteriori error estimators for both the elasticity and phase field equations, which drive mesh adaptivity for static and propagating fractures. This combination means that it is possible to be reliably and efficiently solve phase field fracture problems with arbitrary initial meshes, irrespective of the initial geometry or loading conditions. This ability is demonstrated on several example problems, which are solved using a light-BFGS (Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton algorithm. The examples highlight the importance of driving mesh adaptivity using both the elasticity and phase field errors for physically meaningful, yet computationally tractable, results. They also reveal the importance of including p-refinement, which is typically not included in existing phase field literature. The above features provide a powerful and general tool for modelling fracture propagation with controlled errors and degree-of-freedom optimised meshes.  more » « less
Award ID(s):
1847173
PAR ID:
10495679
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Computer Methods in Applied Mechanics and Engineering
Volume:
416
Issue:
C
ISSN:
0045-7825
Page Range / eLocation ID:
116336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we review and describe our computational framework for solving multiphysics phase-field fracture problems in porous media. Therein, the following five coupled nonlinear physical models are addressed: displacements (geo-mechanics), a phase-field variable to indicate the fracture position, a pressure equation (to describe flow), a proppant concentration equation, and/or a saturation equation for two-phase fracture flow, and finally a finite element crack width problem. The overall coupled problem is solved with a staggered solution approach, known in subsurface modeling as the fixed-stress iteration. A main focus is on physics-based discretizations. Galerkin finite elements are employed for the displacement-phase-field system and the crack width problem. Enriched Galerkin formulations are used for the pressure equation. Further enrichments using entropy-vanishing viscosity are employed for the proppant and/or saturation equations. A robust and efficient quasi-monolithic semi-smooth Newton solver, local mesh adaptivity, and parallel implementations allow for competitive timings in terms of the computational cost. Our framework can treat two- and three-dimensional realistic field and laboratory examples. The resulting program is an in-house code named IPACS (Integrated Phase-field Advanced Crack Propagation Simulator) and is based on the finite element library deal.II. Representative numerical examples are included in this document. 
    more » « less
  2. Summary

    We present an algorithm to simulate curvilinear hydraulic fractures in plane strain and axisymmetry. We restrict our attention to sharp fractures propagating in an isotropic, linear elastic medium and driven by the injection of a laminar, Newtonian fluid governed by lubrication theory, and we require the existence of a finite lag region between the fluid front and the crack tip. The key novelty of our approach is in how we discretize the evolving crack and fluid domains: we utilize universal meshes (UMs), a technique to create conforming triangulations of a problem domain by only perturbing nodes of a universal background mesh in the vicinity of the boundary. In this way, we construct meshes, which conform to the crack and to the fluid front. This allows us to build standard piecewise linear finite element spaces and to monolithically solve the quasistatic hydraulic fracture problem for the displacement field in the rock and the pressure in the fluid. We demonstrate the performance of our algorithms through three examples: a convergence study in plane strain, a comparison with experiments in axisymmetry, and a novel case of a fracture in a narrow pay zone.

     
    more » « less
  3. Summary

    A robust and efficient strategy is proposed to simulate mechanical problems involving cohesive fractures. This class of problems is characterized by a global structural behavior that is strongly affected by localized nonlinearities at relatively small‐sized critical regions. The proposed approach is based on the division of a simulation into a suitable number of sub‐simulations where adaptive mesh refinement is performed only once based on refinement window(s) around crack front process zone(s). The initialization of Newton‐Raphson nonlinear iterations at the start of each sub‐simulation is accomplished by solving a linear problem based on a secant stiffness, rather than a volume mapping of nonlinear solutions between meshes. The secant stiffness is evaluated using material state information stored/read on crack surface facets which are employed to explicitly represent the geometry of the discontinuity surface independently of the volume mesh within the generalized finite element method framework. Moreover, a simplified version of the algorithm is proposed for its straightforward implementation into existing commercial software. Data transfer between sub‐simulations is not required in the simplified strategy. The computational efficiency, accuracy, and robustness of the proposed strategies are demonstrated by an application to cohesive fracture simulations in 3‐D. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less
  4. Summary

    The quasicontinuum (QC) method is a concurrent scale‐bridging technique that extends atomistic accuracy to significantly larger length scales by reducing the full atomic ensemble to a small set of representative atoms and using interpolation to recover the motion of all lattice sites where full atomistic resolution is not necessary. While traditional QC methods thereby create interfaces between fully resolved and coarse‐grained regions, the recently introduced fully nonlocal QC framework does not fundamentally differentiate between atomistic and coarsened domains. Adding adaptive refinement enables us to tie atomistic resolution to evolving regions of interest such as moving defects. However, model adaptivity is challenging because large particle motion is described based on a reference mesh (even in the atomistic regions). Unlike in the context of, for example, finite element meshes, adaptivity here requires that (i) all vertices lie on a discrete point set (the atomic lattice), (ii) model refinement is performed locally and provides sufficient mesh quality, and (iii) Verlet neighborhood updates in the atomistic domain are performed against a Lagrangian mesh. With the suite of adaptivity tools outlined here, the nonlocal QC method is shown to bridge across scales from atomistics to the continuum in a truly seamless fashion, as illustrated for nanoindentation and void growth. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less
  5. Abstract

    Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted meshes, immersed boundary methods instead embed the computational domain in a structured background grid. Interpolation-based immersed boundary methods augment existing finite element software to non-invasively implement immersed boundary capabilities through extraction. Extraction interpolates the structured background basis as a linear combination of Lagrange polynomials defined on a foreground mesh, creating an interpolated basis that can be easily integrated by existing methods. This work extends the interpolation-based immersed isogeometric method to multi-material and multi-physics problems. Beginning from level-set descriptions of domain geometries, Heaviside enrichment is implemented to accommodate discontinuities in state variable fields across material interfaces. Adaptive refinement with truncated hierarchically refined B-splines (THB-splines) is used to both improve interface geometry representations and to resolve large solution gradients near interfaces. Multi-physics problems typically involve coupled fields where each field has unique discretization requirements. This work presents a novel discretization method for coupled problems through the application of extraction, using a single foreground mesh for all fields. Numerical examples illustrate optimal convergence rates for this method in both 2D and 3D, for partial differential equations representing heat conduction, linear elasticity, and a coupled thermo-mechanical problem. The utility of this method is demonstrated through image-based analysis of a composite sample, where in addition to circumventing typical meshing difficulties, this method reduces the required degrees of freedom when compared to classical boundary-fitted finite element methods.

     
    more » « less