AI language technologies increasingly assist and expand human communication. While AI-mediated communication reduces human effort, its societal consequences are poorly understood. In this study, we investigate whether using an AI writing assistant in personal self-presentation changes how people talk about themselves. In an online experiment, we asked participants (N=200) to introduce themselves to others. An AI language assistant supported their writing by suggesting sentence completions. The language model generating suggestions was fine-tuned to preferably suggest either interest, work, or hospitality topics. We evaluate how the topic preference of a language model affected users’ topic choice by analyzing the topics participants discussed in their self-presentations. Our results suggest that AI language technologies may change the topics their users talk about. We discuss the need for a careful debate and evaluation of the topic priors built into AI language technologies.
more »
« less
Human-Centered Responsible Artificial Intelligence: Current & Future Trends
In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence. While different research communities may use different terminol- ogy to discuss similar topics, all of this work is ultimately aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI. In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map cur- rent and future research trends to advance this important area of research by fostering collaboration and sharing ideas.
more »
« less
- Award ID(s):
- 1704369
- PAR ID:
- 10463687
- Date Published:
- Journal Name:
- ACM Conference on Human Factors in Computing Systems
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The need for interpretable and accountable intelligent systems grows along with the prevalence of artificial intelligence ( AI ) applications used in everyday life. Explainable AI ( XAI ) systems are intended to self-explain the reasoning behind system decisions and predictions. Researchers from different disciplines work together to define, design, and evaluate explainable systems. However, scholars from different disciplines focus on different objectives and fairly independent topics of XAI research, which poses challenges for identifying appropriate design and evaluation methodology and consolidating knowledge across efforts. To this end, this article presents a survey and framework intended to share knowledge and experiences of XAI design and evaluation methods across multiple disciplines. Aiming to support diverse design goals and evaluation methods in XAI research, after a thorough review of XAI related papers in the fields of machine learning, visualization, and human-computer interaction, we present a categorization of XAI design goals and evaluation methods. Our categorization presents the mapping between design goals for different XAI user groups and their evaluation methods. From our findings, we develop a framework with step-by-step design guidelines paired with evaluation methods to close the iterative design and evaluation cycles in multidisciplinary XAI teams. Further, we provide summarized ready-to-use tables of evaluation methods and recommendations for different goals in XAI research.more » « less
-
University students have begun to use Artificial Intelligence (AI) in many different ways in their undergraduate education, some beneficial to their learning, and some simply expedient to completing assignments with as little work as possible. This exploratory qualitative study examines how undergraduate students used AI in a large General Education course on sustainability and technology at a research university in the United States in 2023. Thirty-nine students documented their use of AI in their final course project, which involved analyzing conceptual networks connecting core sustainability concepts. Through iterative qualitative coding, we identified key patterns in students’ AI use, including higher-order writing tasks (understanding complex topics, finding evidence), lower-order writing tasks (revising, editing, proofreading), and other learning activities (efficiency enhancement, independent research). Students primarily used AI to improve communication of their original ideas, though some leveraged it for more complex tasks like finding evidence and developing arguments. Many students expressed skepticism about AI-generated content and emphasized maintaining their intellectual independence. While some viewed AI as vital for improving their work, others explicitly distinguished between AI-assisted editing and their original thinking. This analysis provides insight into how students navigate AI use when it is explicitly permitted in coursework, with implications for effectively integrating AI into higher education to support student learning.more » « less
-
This study explores the affective responses and newsworthiness perceptions of generative AI for visual journalism. While generative AI offers advantages for newsrooms in terms of producing unique images and cutting costs, the potential misuse of AI-generated news images is a cause for concern. For our study, we designed a 3-part news image codebook for affect-labeling news images based on journalism ethics and photography guidelines. We collected 200 news headlines and images retrieved from a variety of U.S. news sources on the topics of gun violence and climate change, generated corresponding news images from DALL-E 2 and asked annotators their emotional responses to the human-selected and AI-generated news images following the codebook. We also examined the impact of modality on emotions by measuring the effects of visual and textual modalities on emotional responses. The findings of this study provide insights into the quality and emotional impact of generative news images produced by humans and AI. Further, results of this work can be useful in developing technical guidelines as well as policy measures for the ethical use of generative AI systems in journalistic production. The codebook, images and annotations are made publicly available to facilitate future research in affective computing, specifically tailored to civic and public-interest journalism.more » « less
-
Students bring different levels of interest to learning experiences, which impacts how they engage with learning materials. This study aims to understand the relationship between student's interest levels and their scientific observation behaviors within a Minecraft-based learning system. Motivated by the growing interest in integrating human-AI collaboration within educational research, we combine the capabilities of Large Language Models (LLMs) with the expertise of human researchers to capture the emerging themes within students’ observations. Using epistemic network analysis, we then visualized and compared the observational patterns of students with high and low situational interest. Our findings indicate that students with higher situational interest tend to make observations across a broader range of topics, with a particular emphasis on scientific content. These results highlight the potential for developing timely interventions to support students with low situational interest.more » « less
An official website of the United States government

