skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems
The need for interpretable and accountable intelligent systems grows along with the prevalence of artificial intelligence ( AI ) applications used in everyday life. Explainable AI ( XAI ) systems are intended to self-explain the reasoning behind system decisions and predictions. Researchers from different disciplines work together to define, design, and evaluate explainable systems. However, scholars from different disciplines focus on different objectives and fairly independent topics of XAI research, which poses challenges for identifying appropriate design and evaluation methodology and consolidating knowledge across efforts. To this end, this article presents a survey and framework intended to share knowledge and experiences of XAI design and evaluation methods across multiple disciplines. Aiming to support diverse design goals and evaluation methods in XAI research, after a thorough review of XAI related papers in the fields of machine learning, visualization, and human-computer interaction, we present a categorization of XAI design goals and evaluation methods. Our categorization presents the mapping between design goals for different XAI user groups and their evaluation methods. From our findings, we develop a framework with step-by-step design guidelines paired with evaluation methods to close the iterative design and evaluation cycles in multidisciplinary XAI teams. Further, we provide summarized ready-to-use tables of evaluation methods and recommendations for different goals in XAI research.  more » « less
Award ID(s):
1900767
PAR ID:
10344313
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Interactive Intelligent Systems
Volume:
11
Issue:
3-4
ISSN:
2160-6455
Page Range / eLocation ID:
1 to 45
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Neural network architectures are achieving superhuman performance on an expanding range of tasks. To effectively and safely deploy these systems, their decision‐making must be understandable to a wide range of stakeholders. Methods to explain artificial intelligence (AI) have been proposed to answer this challenge, but a lack of theory impedes the development of systematic abstractions, which are necessary for cumulative knowledge gains. We propose Bayesian Teaching as a framework for unifying explainable AI (XAI) by integrating machine learning and human learning. Bayesian Teaching formalizes explanation as a communication act of an explainer to shift the beliefs of an explainee. This formalization decomposes a wide range of XAI methods into four components: (a) the target inference, (b) the explanation, (c) the explainee model, and (d) the explainer model. The abstraction afforded by Bayesian Teaching to decompose XAI methods elucidates the invariances among them. The decomposition of XAI systems enables modular validation, as each of the first three components listed can be tested semi‐independently. This decomposition also promotes generalization through recombination of components from different XAI systems, which facilitates the generation of novel variants. These new variants need not be evaluated one by one provided that each component has been validated, leading to an exponential decrease in development time. Finally, by making the goal of explanation explicit, Bayesian Teaching helps developers to assess how suitable an XAI system is for its intended real‐world use case. Thus, Bayesian Teaching provides a theoretical framework that encourages systematic, scientific investigation of XAI. 
    more » « less
  2. Abstract Recent advances in explainable artificial intelligence (XAI) methods show promise for understanding predictions made by machine learning (ML) models. XAI explains how the input features are relevant or important for the model predictions. We train linear regression (LR) and convolutional neural network (CNN) models to make 1-day predictions of sea ice velocity in the Arctic from inputs of present-day wind velocity and previous-day ice velocity and concentration. We apply XAI methods to the CNN and compare explanations to variance explained by LR. We confirm the feasibility of using a novel XAI method [i.e., global layerwise relevance propagation (LRP)] to understand ML model predictions of sea ice motion by comparing it to established techniques. We investigate a suite of linear, perturbation-based, and propagation-based XAI methods in both local and global forms. Outputs from different explainability methods are generally consistent in showing that wind speed is the input feature with the highest contribution to ML predictions of ice motion, and we discuss inconsistencies in the spatial variability of the explanations. Additionally, we show that the CNN relies on both linear and nonlinear relationships between the inputs and uses nonlocal information to make predictions. LRP shows that wind speed over land is highly relevant for predicting ice motion offshore. This provides a framework to show how knowledge of environmental variables (i.e., wind) on land could be useful for predicting other properties (i.e., sea ice velocity) elsewhere. Significance StatementExplainable artificial intelligence (XAI) is useful for understanding predictions made by machine learning models. Our research establishes trustability in a novel implementation of an explainable AI method known as layerwise relevance propagation for Earth science applications. To do this, we provide a comparative evaluation of a suite of explainable AI methods applied to machine learning models that make 1-day predictions of Arctic sea ice velocity. We use explainable AI outputs to understand how the input features are used by the machine learning to predict ice motion. Additionally, we show that a convolutional neural network uses nonlinear and nonlocal information in making its predictions. We take advantage of the nonlocality to investigate the extent to which knowledge of wind on land is useful for predicting sea ice velocity elsewhere. 
    more » « less
  3. As the societal impact of Deep Neural Networks (DNNs) grows, the goals for advancing DNNs become more complex and diverse, ranging from improving a conventional model accuracy metric to infusing advanced human virtues such as fairness, accountability, transparency, and unbiasedness. Recently, techniques in Explainable Artificial Intelligence (XAI) have been attracting considerable attention and have tremendously helped Machine Learning (ML) engineers in understand AI models. However, at the same time, we started to witness the emerging need beyond XAI among AI communities; based on the insights learned from XAI, how can we better empower ML engineers in steering their DNNs so that the model’s reasonableness and performance can be improved as intended? This article provides a timely and extensive literature overview of the field Explanation-Guided Learning (EGL), a domain of techniques that steer the DNNs’ reasoning process by adding regularization, supervision, or intervention on model explanations. In doing so, we first provide a formal definition of EGL and its general learning paradigm. Second, an overview of the key factors for EGL evaluation, as well as summarization and categorization of existing evaluation procedures and metrics for EGL are provided. Finally, the current and potential future application areas and directions of EGL are discussed, and an extensive experimental study is presented aiming at providing comprehensive comparative studies among existing EGL models in various popular application domains, such as Computer Vision and Natural Language Processing domains. Additional resources related to event prediction are included in the article website:https://kugaoyang.github.io/EGL/ 
    more » « less
  4. Recent years have witnessed the growing literature in empirical evaluation of explainable AI (XAI) methods. This study contributes to this ongoing conversation by presenting a comparison on the effects of a set of established XAI methods in AI-assisted decision making. Based on our review of previous literature, we highlight three desirable properties that ideal AI explanations should satisfy — improve people’s understanding of the AI model, help people recognize the model uncertainty, and support people’s calibrated trust in the model. Through three randomized controlled experiments, we evaluate whether four types of common model-agnostic explainable AI methods satisfy these properties on two types of AI models of varying levels of complexity, and in two kinds of decision making contexts where people perceive themselves as having different levels of domain expertise. Our results demonstrate that many AI explanations do not satisfy any of the desirable properties when used on decision making tasks that people have little domain expertise in. On decision making tasks that people are more knowledgeable, the feature contribution explanation is shown to satisfy more desiderata of AI explanations, even when the AI model is inherently complex. We conclude by discussing the implications of our study for improving the design of XAI methods to better support human decision making, and for advancing more rigorous empirical evaluation of XAI methods. 
    more » « less
  5. Recent research has developed a number of eXplainable AI (XAI) techniques, such as gradient-based approaches, input perturbation-base methods, and black-box explanation methods. While these XAI techniques can extract meaningful insights from deep learning models, how to properly evaluate them remains an open problem. The most widely used approach is to perturb or even remove what the XAI method considers to be the most important features in an input and observe the changes in the output prediction. This approach, although straightforward, suffers the Out-of-Distribution (OOD) problem as the perturbed samples may no longer follow the original data distribution. A recent method RemOve And Retrain (ROAR) solves the OOD issue by retraining the model with perturbed samples guided by explanations. However, using the model retrained based on XAI methods to evaluate these explainers may cause information leakage and thus lead to unfair comparisons. We propose Fine-tuned Fidelity (F-Fidelity), a robust evaluation framework for XAI, which utilizes i) an explanation-agnostic fine-tuning strategy, thus mitigating the information leakage issue, and ii) a random masking operation that ensures that the removal step does not generate an OOD input. We also design controlled experiments with state-of-the-art (SOTA) explainers and their degraded version to verify the correctness of our framework. We conduct experiments on multiple data modalities, such as images, time series, and natural language. The results demonstrate that F-Fidelity significantly improves upon prior evaluation metrics in recovering the ground-truth ranking of the explainers. Furthermore, we show both theoretically and empirically that, given a faithful explainer, the F-Fidelity metric can be used to compute the sparsity of influential input components, i.e., to extract the true explanation size. 
    more » « less