skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surface Topology as Non-Destructive Proxy for Tensile Strength of Plastic Parts from Filament-based Material Extrusion
Non-destructive characterization of 3D printed parts is critical for quality control and adoption of additive manufacturing (AM). The low-cost driver for AM of thermoplastics, typically through material extrusion AM (MEAM), challenges the integration of real-time, operando characterization and control schemes that have been developed for metals. Here, we demonstrate that the surface topology determined from optical profilometry provides information about the mechanical response of the printed part using commercial ABS filaments through calibration based correlations. The influence of layer thickness was examined on the tensile properties of MEAM ABS. Surface topology was converted into amplitude spectra using fast Fourier transforms. The scatter in the tensile strength of the replicate samples was well represented by the differences in the amplitude of the two fundamental waves that describe the periodicity of the printed roads. These results suggest that information about previously printed layers is transferred to subsequent layers that can be resolved from optical profilometry and offers the potential of a rapid, nondestructive post-print characterization for improved quality control.  more » « less
Award ID(s):
2011289
PAR ID:
10463691
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Progress in additive manufacturing
ISSN:
2363-9520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Purpose Mechanical anisotropy associated with material extrusion additive manufacturing (AM) complicates the design of complex structures. This study aims to focus on investigating the effects of design choices offered by material extrusion AM – namely, the choice of infill pattern – on the structural performance and optimality of a given optimized topology. Elucidation of these effects provides evidence that using design tools that incorporate anisotropic behavior is necessary for designing truly optimal structures for manufacturing via AM. Design/methodology/approach A benchmark topology optimization (TO) problem was solved for compliance minimization of a thick beam in three-point bending and the resulting geometry was printed using fused filament fabrication. The optimized geometry was printed using a variety of infill patterns and the strength, stiffness and failure behavior were analyzed and compared. The bending tests were accompanied by corresponding elastic finite element analyzes (FEA) in ABAQUS. The FEA used the material properties obtained during tensile and shear testing to define orthotropic composite plies and simulate individual printed layers in the physical specimens. Findings Experiments showed that stiffness varied by as much as 22% and failure load varied by as much as 426% between structures printed with different infill patterns. The observed failure modes were also highly dependent on infill patterns with failure propagating along with printed interfaces for all infill patterns that were consistent between layers. Elastic FEA using orthotropic composite plies was found to accurately predict the stiffness of printed structures, but a simple maximum stress failure criterion was not sufficient to predict strength. Despite this, FE stress contours proved beneficial in identifying the locations of failure in printed structures. Originality/value This study quantifies the effects of infill patterns in printed structures using a classic TO geometry. The results presented to establish a benchmark that can be used to guide the development of emerging manufacturing-oriented TO protocols that incorporate directionally-dependent, process-specific material properties. 
    more » « less
  2. The finishing of additive manufactured (AM) components is crucial for endowing them with fatigue resistance. Unfortunately, current AM processes naturally promote anisotropic surface characteristics that make it challenging to optimize finishing processes. In this study, bead-blasting is explored as a process for finishing Electron Beam Melted (EBM) Ti-6Al-4V. The effects of anisotropic roughness characteristics on the mechanics of bead-blasting are delineated using surface texture measurements via optical profilometry and residual stress measurements via X-ray diffraction. As-received surfaces resulting from AM, as well as those that have been Electrical Discharge Machined (EDM), are studied. It is seen that pre-processed roughness textures heavily influence the final textures and residual stresses. These linkages are quantified using a plasticity index as the governing metric—a rougher surface features a larger plastic index, which results in comparatively greater evolution of its texture characteristics than a smoother surface after equivalent bead-blasting treatments. The mechanics of this evolution are delineated using energy-controlled indentation as a model representing a single impact in bead-blasting. It is seen that rougher surfaces featuring complex textures in as-received states also produce complex stress states featuring a greater level of locally tensile stresses during indentation compared with smoother surfaces. Approaches to address these complications are proposed that can potentially transform a printed, non-functional surface into one that is optimized for fatigue resistance. 
    more » « less
  3. null (Ed.)
    Additive manufactured (AM) magnesium alloys corrode rapidly due to tensile stress and coarse microstructures. Cyclically combining (hybridizing) additive manufacturing with interlayer ultrasonic peening was proposed as a solution to improve corrosion resistance of additive manufactured magnesium WE43 alloy through strengthening mechanisms and compressive residual stress. Applying interlayer peening work hardened discrete layers and formed a glocal integrity of regional grain refinement and subsurface compressive residual stress barriers. Tensile residual stress that typically accelerates corrosion decreased 90%. Results showed time-resolved control over corrosion was attainable by interlayer peening, and local corrosion within print cells decreased 57% with respect to as-printed WE43. 
    more » « less
  4. Surface topography represents a critical barrier to the advancement of additive manufacturing (AM). Because some internal features cannot be polished and because of the growing trend of in situ process monitoring, it is important to understand the as-built surface topography of AM components. Here we highlight the challenges of using industry-standard surface-measurement techniques on binder-jet-printed parts. We measured the topography of binder-jet-printed Inconel alloy 625 samples in their green state and over the course of sintering; this system allowed the investigation of identical starting materials undergoing systematic changes in topography. Specifically, we compared the results from industry-standard surface-measurement techniques—optical interferometry, 3D microscopy (by fringe projection), and stylus profilometry—against the “true topography,” as revealed by cross-sectional scanning electron microscopy. While the true topography changed significantly with sintering, the industry-standard techniques detected no change in the root-mean-square height because of complex surface features, including multi-scale topography, overhangs, and steep surface slopes. While these findings do not invalidate the use of industry-standard techniques for binder-jet-printed samples, they demonstrate a challenge in their application, and they motivate the development of new metrics and new techniques to more accurately describe surface topography in AM. 
    more » « less
  5. Abstract Fused deposition modeling (FMD) is considered one of the most common additive manufacturing methods for creating prototypes and small functional parts. Many researchers have studied Polylactic acid (PLA), Polycarbonate (PC), and Acrylonitrile butadiene styrene (ABS) as a material for fused deposition modeling printing. Among them, Polylactic Acid (PLA) is considered one of the most popular thermoplastic materials due to its low cost and biodegradable properties. In this study, silk PLA material was used. In Fused deposition modeling (FMD), the selection of printing parameters plays a pivotal role in determining the overall quality and integrity of the 3D-printed products. These parameters significantly influence the quality and strength of 3-D printed products. This study investigates the mechanical properties of silk-PLA printed specimens under different printing conditions, such as layer thickness, nozzle temperature, and print speed. All the tensile specimens were tested using ASTM D638 to characterize Young’s modulus and ultimate tensile strength. The thickness of the layers of tensile specimens was set to 0.1 mm, 0.15 mm, and 0.2 mm. The temperatures of the nozzle used during printing varied from 200°C, 210°C, and 220°C, whereas print speeds of 100 mm/s, 120 mm/s, and 140 mm/s were considered. The other printing parameters were kept consistent for all specimens. The result indicates tensile strength generally increases with increasing temperature of the nozzle, up to 220°C; however, a decline was observed in the average Young’s modulus value when the thickness of the layer increased from 0.10 mm to 0.20 mm. According to the results of the ANOVA analysis, the interaction between layer thickness, nozzle temperature, and printing speed significantly affects the tensile strength and Young’s modulus of Silk-PLA. This study reveals that nozzle temperature is the most critical parameter regarding the ultimate tensile strength and Young’s modulus, providing crucial insights for optimizing 3D printing parameters. 
    more » « less