skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Third post-Newtonian effective-one-body Hamiltonian in scalar-tensor and Einstein-scalar-Gauss-Bonnet gravity
Award ID(s):
2006538 2207502
PAR ID:
10463692
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Review D
Volume:
107
Issue:
10
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gravitational waves emitted by black hole binary inspiral and mergers enable unprecedented strong-field tests of gravity, requiring accurate theoretical modeling of the expected signals in extensions of general relativity. In this paper we model the gravitational wave emission of inspiralling binaries in scalar Gauss–Bonnet gravity theories. Going beyond the weak-coupling approximation, we derive the gravitational waveform to relative first post-Newtonian order beyond the quadrupole approximation and calculate new contributions from nonlinear curvature terms. We also compute the scalar waveform to relative 0.5PN order beyond the leading −0.5PN order terms. We quantify the effect of these terms and provide ready-to-implement gravitational wave and scalar waveforms as well as the Fourier domain phase for quasi-circular binaries. We also perform a parameter space study, which indicates that the values of black hole scalar charges play a crucial role in the detectability of deviation from general relativity. We also compare the scalar waveforms to numerical relativity simulations to assess the impact of the relativistic corrections to the scalar radiation. Our results provide important foundations for future precision tests of gravity. 
    more » « less
  2. We review recent suggestions to quantum simulate scalar electrodynamics (the lattice Abelian Higgs model) in 1+1 dimensions with rectangular arrays of Rydberg atoms. We show that platforms made publicly available recently allow empirical explorations of the critical behavior of quantum simulators. We discuss recent progress regarding the phase diagram of two-leg ladders, effective Hamiltonian approaches and the construction of hybrid quantum algorithms targeting hadronization in collider physics event generators. 
    more » « less