skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring spatial and temporal patterns of viral infection across populations of the Melissa blue butterfly
Abstract Identifying patterns of pathogen infection in natural systems is crucial to understanding mechanisms of host–pathogen interactions. In this study, we explored how Junonia coenia densovirus (JcDV) infection varies over space and time in populations of the Melissa blue butterfly (Lycaeides melissa: Lycaenidae) using two different host plants. Collections ofL. melissaadults from multiple populations and years, along with host plant tissue and community samples of arthropods found on host plants, were screened to determine JcDV prevalence and load. Additionally, we sampled at multiple time points within a singleL. melissaflight season to investigate intra‐annual variation in infection patterns.We found population‐specific variation in viral prevalence ofL. melissaacross collection years, with historical samples potentially having higher viral prevalence than contemporary samples, although host plant diet was not informative for these patterns. Patterns of infection across multiple generations within a flight season showed that late‐season samples had a higher proportion of JcDV‐positive individuals, suggesting an accumulation of virus over the season. Sequence data from a segment of the JcDV capsid gene showed a lack of viral genetic diversity betweenL. melissacollected from different localities, and little to no viral particles were found in the surrounding environment.Our discovery of temporal variation in infection suggests that multiple sampling efforts must be made when describing pathogen prevalence in multivoltine hosts. Our findings represent an important first step towards further exploration of the ecological factors mediating disease prevalence and host‐specific variability of infection in wild insect populations.  more » « less
Award ID(s):
2114793 1929522
PAR ID:
10463815
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecological Entomology
Volume:
49
Issue:
1
ISSN:
0307-6946
Format(s):
Medium: X Size: p. 54-66
Size(s):
p. 54-66
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Insect–pathogen dynamics can show seasonal and inter‐annual variations that covary with fluctuations in insect abundance and climate. Long‐term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence.Monarch butterfliesDanaus plexippusare commonly infected with the protozoanOphryocystis elektroscirrha(OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection.Here we compiled data onOEinfection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration.Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid‐2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result ofOE, highlighting the need to consider the parasite as a potential threat to the monarch population.Increases in infection among eastern North American monarchs post‐2002 suggest that changes to the host’s ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend. 
    more » « less
  2. Abstract Heterogeneities in infections among host populations may arise through differences in environmental conditions through two mechanisms. First, environmental conditions may alter host exposure to pathogens via effects on survival. Second, environmental conditions may alter host susceptibility, making infection more or less likely if contact between a host and pathogen occurs. Further, host susceptibility might be altered through acquired resistance, which hosts can develop, in some systems, through exposure to dead or decaying pathogens and their metabolites. Environmental conditions may alter the rates of pathogen decomposition, influencing the likelihood of hosts developing acquired resistance.The present study primarily tests how environmental context influences the relative contributions of pathogen survival and per capita transmission on host infection prevalence using the amphibian chytrid fungus (Batrachochytrium dendrobatidis; Bd) as a model system. Secondarily, we evaluate how environmental context influences the decomposition of Bd because previous studies have shown that dead Bd and its metabolites can illicit acquired resistance in hosts. We conducted Bd survival and infection experiments and then fit models to discern how Bd mortality, decomposition and per capita transmission rates vary among water sources [e.g. artificial spring water (ASW) or water from three ponds].We found that infection prevalence differed among water sources, which was driven by differences in mortality rates of Bd, rather than differences in per capita transmission rates. Bd mortality rates varied among pond water treatments and were lower in ASW compared to pond water.These results suggest that variation in Bd infection dynamics could be a function of environmental factors in waterbodies that result in differences in exposure of hosts to live Bd. In contrast to the persistence of live Bd, we found that the rates of decomposition of dead Bd did not vary among water sources, which may suggest that exposure of hosts to dead Bd or its metabolites might not commonly vary among nearby sites. Ultimately, a mechanistic understanding of the environmental dependence of free‐living pathogens could lead to a deeper understanding of the patterns of outbreak heterogeneity, which could inform surveillance and management strategies. 
    more » « less
  3. Abstract Determining parameters that govern pathogen transmission (such as the force of infection, FOI), and pathogen impacts on morbidity and mortality, is exceptionally challenging for wildlife. Vital parameters can vary, for example across host populations, between sexes and within an individual's lifetime.Feline immunodeficiency virus (FIV) is a lentivirus affecting domestic and wild cat species, forming species‐specific viral–host associations. FIV infection is common in populations of puma (Puma concolor), yet uncertainty remains over transmission parameters and the significance of FIV infection for puma mortality. In this study, the age‐specific FOI of FIV in pumas was estimated from prevalence data, and the evidence for disease‐associated mortality was assessed.We fitted candidate models to FIV prevalence data and adopted a maximum likelihood method to estimate parameter values in each model. The models with the best fit were determined to infer the most likely FOI curves. We applied this strategy for female and male pumas from California, Colorado, and Florida.When splitting the data by sex and area, our FOI modeling revealed no evidence of disease‐associated mortality in any population. Both sex and location were found to influence the FOI, which was generally higher for male pumas than for females. For female pumas at all sites, and male pumas from California and Colorado, the FOI did not vary with puma age, implying FIV transmission can happen throughout life; this result supports the idea that transmission can occur from mothers to cubs and also throughout adult life. For Florida males, the FOI was a decreasing function of puma age, indicating an increased risk of infection in the early years, and a decreased risk at older ages.This research provides critical insight into pathogen transmission and impact in a secretive and solitary carnivore. Our findings shed light on the debate on whether FIV causes mortality in wild felids like puma, and our approach may be adopted for other diseases and species. The methodology we present can be used for identifying likely transmission routes of a pathogen and also estimating any disease‐associated mortality, both of which can be difficult to establish for wildlife diseases in particular. 
    more » « less
  4. Abstract Animal space use and spatial overlap can have important consequences for population‐level processes such as social interactions and pathogen transmission. Identifying how environmental variability and inter‐individual variation affect spatial patterns and in turn influence interactions in animal populations is a priority for the study of animal behaviour and disease ecology. Environmental food availability and macroparasite infection are common drivers of variation, but there are few experimental studies investigating how they affect spatial patterns of wildlife.Bank voles (Clethrionomys glareolus) are a tractable study system to investigate spatial patterns of wildlife and are amenable to experimental manipulations. We conducted a replicated, factorial field experiment in which we provided supplementary food and removed helminths in vole populations in natural forest habitat and monitored vole space use and spatial overlap using capture–mark–recapture methods.Using network analysis, we quantified vole space use and spatial overlap. We compared the effects of food supplementation and helminth removal and investigated the impacts of season, sex and reproductive status on space use and spatial overlap.We found that food supplementation decreased vole space use while helminth removal increased space use. Space use also varied by sex, reproductive status and season. Spatial overlap was similar between treatments despite up to threefold differences in population size.By quantifying the spatial effects of food availability and macroparasite infection on wildlife populations, we demonstrate the potential for space use and population density to trade‐off and maintain consistent spatial overlap in wildlife populations. This has important implications for spatial processes in wildlife including pathogen transmission. 
    more » « less
  5. Although infectious diseases play a critical role in population regulation, our knowledge of complex drivers of disease for insects is limited. We conducted a field study on Baltimore checkerspot caterpillars (Euphydryas phaeton), chemical specialists on plants containing iridoid glycosides (IGs), to investigate the roles of host plant, phytochemistry, ontogeny and spatial associations in determining viral prevalence. We analysed individuals for viral presence and loads, quantified leaf IG concentrations from their native and novel host plants, and sequestered IGs in caterpillars. We found proximate caterpillar groups had greater similarity in infection prevalence, with areas of high prevalence indicating viral hotspots. Underlying variation in host plant chemistry corresponded to differences in viral prevalence. Furthermore, we used structural equation modeling to examine causal drivers of infection prevalence and loads. Advanced ontogeny was associated with increased viral prevalence and loads, as well as decreased sequestration of IGs. Infection loads were lower on the novel host plant, but prevalence was slightly higher, partially explained by decreased sequestration of IGs. Altogether, our findings reveal that spatial proximity, ontogeny, host plant species and secondary phytochemistry can all contribute to structuring infection risk, and thus offer insight into causal drivers of disease prevalence in complex plant–insect systems. 
    more » « less