skip to main content

Search for: All records

Award ID contains: 2114793

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The fate of insects in the Anthropocene has been widely discussed in the scientific literature, the popular media, and in policy circles. This recent attention is justified because reductions in insect abundance and diversity have the potential to undermine the stability of terrestrial ecosystems. Reports of insect declines have also been accompanied by skepticism that is healthy and to be expected in scientific discussion. However, we are concerned about a prevalent misconception that equates reports from monitored natural areas with the global status of insects. In the vast majority of cases, areas monitored for arthropods are undeveloped and thus do not record or even necessarily reflect the masses of insects that are continuously being impacted by habitat loss to urban, suburban and agricultural expansion. We address this misconception and discuss ways in which conservation and policy can be enhanced by correctly locating results from insect monitoring programs within our broader knowledge of biodiversity loss.

    more » « less
  2. Abstract

    The potential effects of climate change on plant reproductive phenology include asynchronies with pollinators and reductions in plant fitness, leading to extinction and loss of ecosystem function. In particular, plant phenology is sensitive to extreme weather events, which are occurring with increasing severity and frequency in recent decades and are linked to anthropogenic climate change and shifts in atmospheric circulation. For 15 plant species in a Venezuelan cloud forest, we documented dramatic changes in monthly flower and fruit community composition over a 35‐year time series, from 1983 to 2017, and these changes were linked directly to higher temperatures, lower precipitation, and decreased soil water availability. The patterns documented here do not mirror trends in temperate zones but corroborate results from the Asian tropics. More intense droughts are predicted to occur in the region, which will cause dramatic changes in flower and fruit availability.

    more » « less
  3. Abstract

    Ongoing declines in insect populations have led to substantial concern and calls for conservation action. However, even for relatively well studied groups, like butterflies, information relevant to species‐specific status and risk is scattered across field guides, the scientific literature, and agency reports. Consequently, attention and resources have been spent on a minuscule fraction of insect diversity, including a few well studied butterflies. Here we bring together heterogeneous sources of information for 396 butterfly species to provide the first regional assessment of butterflies for the 11 western US states. For 184 species, we use monitoring data to characterize historical and projected trends in population abundance. For another 212 species (for which monitoring data are not available, but other types of information can be collected), we use exposure to climate change, development, geographic range, number of host plants, and other factors to rank species for conservation concern. A phylogenetic signal is apparent, with concentrations of declining and at‐risk species in the families Lycaenidae and Hesperiidae. A geographic bias exists in that many species that lack monitoring data occur in the more southern states where we expect that impacts of warming and drying trends will be most severe. Legal protection is rare among the taxa with the highest risk values: of the top 100 species, one is listed as threatened under the US Endangered Species Act and one is a candidate for listing. Among the many taxa not currently protected, we highlight a short list of species in decline, includingVanessa annabella,Thorybes mexicanus,Euchloe ausonides, andPholisora catullus. Notably, many of these species have broad geographic ranges, which perhaps highlights a new era of insect conservation in which small or fragmented ranges will not be the only red flags that attract conservation attention.

    more » « less
  4. The pressures of global change acting on wild plants and animals include exposure to environmental toxins, the introduction of non-native species, and climate change. Relatively few studies have been reported in which these three main classes of stressors have been examined simultaneously, allowing for the possibility of synergistic effects in an experimental context. In this study, we exposed caterpillars of the Melissa blue butterfly ( Lycaeides melissa ) to three concentrations of chlorantraniliprole, under three experimental climates, on a diet of a native or a non-native host plant throughout larval development in a fully factorial experiment. We find that high pesticide exposure and a non-native diet exhibit strong negative effects on caterpillars, resulting in 62% and 42% reduction in survival, respectively, while interactive effects tend to be weaker, ranging from 15% to 22% reduction in survival. Interactive effects have been shown to be strong in other contexts, but do not appear to be universal; however, our study shows that the cumulative effects of stressors acting in isolation (additively) are sufficiently strong to severely reduce survival and by extension population persistence in the wild. 
    more » « less
  5. Bossart, Janice L. (Ed.)
    One of the defining features of the Anthropocene is eroding ecosystem services, decreases in biodiversity, and overall reductions in the abundance of once-common organisms, including many insects that play innumerable roles in natural communities and agricultural systems that support human society. It is now clear that the preservation of insects cannot rely solely on the legal protection of natural areas far removed from the densest areas of human habitation. Instead, a critical challenge moving forward is to intelligently manage areas that include intensively farmed landscapes, such as the Central Valley of California. Here we attempt to meet this challenge with a tool for modeling landscape connectivity for insects (with pollinators in particular in mind) that builds on available information including lethality of pesticides and expert opinion on insect movement. Despite the massive fragmentation of the Central Valley, we find that connectivity is possible, especially utilizing the restoration or improvement of agricultural margins, which (in their summed area) exceed natural areas. Our modeling approach is flexible and can be used to address a wide range of questions regarding both changes in land cover as well as changes in pesticide application rates. Finally, we highlight key steps that could be taken moving forward and the great many knowledge gaps that could be addressed in the field to improve future iterations of our modeling approach. 
    more » « less
  6. Research on plant-pollinator interactions requires a diversity of perspectives and approaches, and documenting changing pollinator-plant interactions due to declining insect diversity and climate change is especially challenging. Natural history collections are increasingly important for such research and can provide ecological information across broad spatial and temporal scales. Here, we describe novel approaches that integrate museum specimens from insect and plant collections with field observations to quantify pollen networks over large spatial and temporal gradients. We present methodological strategies for evaluating insect-pollen network parameters based on pollen collected from museum insect specimens. These methods provide insight into spatial and temporal variation in pollen-insect interactions and complement other approaches to studying pollination, such as pollinator observation networks and flower enclosure experiments. We present example data from butterfly pollen networks over the past century in the Great Basin Desert and Sierra Nevada Mountains, United States. Complementary to these approaches, we describe rapid pollen identification methods that can increase speed and accuracy of taxonomic determinations, using pollen grains collected from herbarium specimens. As an example, we describe a convolutional neural network (CNN) to automate identification of pollen. We extracted images of pollen grains from 21 common species from herbarium specimens at the University of Nevada Reno (RENO). The CNN model achieved exceptional accuracy of identification, with a correct classification rate of 98.8%. These and similar approaches can transform the way we estimate pollination network parameters and greatly change inferences from existing networks, which have exploded over the past few decades. These techniques also allow us to address critical ecological questions related to mutualistic networks, community ecology, and conservation biology. Museum collections remain a bountiful source of data for biodiversity science and understanding global change. 
    more » « less
  7. Biodiversity is in crisis, and insects are no exception. To understand insect population and community trends globally, it is necessary to identify and synthesize diverse datasets representing different taxa, regions, and habitats. The relevant literature is, however, vast and challenging to aggregate. The Entomological Global Evidence Map (EntoGEM) project is a systematic effort to search for and catalogue studies with long-term data that can be used to understand changes in insect abundance and diversity. Here, we present the overall EntoGEM framework and results of the first completed subproject of the systematic map, which compiled sources of information about changes in dragonfly and damselfly (Odonata) occurrence, abundance, biomass, distribution, and diversity. We identified 45 multi-year odonate datasets, including 10 studies with data that span more than 10 years. If data from each study could be gathered or extracted, these studies could contribute to analyses of long-term population trends of this important group of indicator insects. The methods developed to support the EntoGEM project, and its framework for synthesizing a vast literature, have the potential to be applied not only to other broad topics in ecology and conservation, but also to other areas of research where data are widely distributed. 
    more » « less