Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Scientific and public interest in the global status of insects has surged recently; however, understanding the relative importance of different stressors and their interconnections remains a crucial problem. We use a meta-synthetic approach to integrate recent hypotheses about insect stressors and responses into a network containing 3385 edges and 108 nodes. The network is highly interconnected, with agricultural intensification most often identified as a root cause. Habitat-related variables are highly connected and appear to be underdiscussed relative to other stressors. We also identify biases and gaps in the recent literature, especially those generated from a focus on economically important and other popular insects, especially pollinators, at the expense of non-pollinating and less charismatic insects. In addition to serving as a case study for how meta-synthesis can map a conceptual landscape, our results identify many important gaps where future meta-analyses will offer critical insights into understanding and mitigating insect biodiversity loss.more » « less
-
Abstract Understanding how populations respond to climate is fundamentally important to many questions in ecology, evolution, and conservation biology. Climate is complex and multifaceted, with aspects affecting populations in different and sometimes unexpected ways. Thus, when measuring the changing climate it is important to consider the complexity of the phenomenon and the number of ways it can be characterized through different metrics. We used a Bayesian sparse modeling approach to select among 80 metrics of climate and applied the approach to 19 datasets of bird, insect, and plant population responses to abiotic conditions as case studies of how the method can be applied for climate variable selection in a time series context. For phenological datasets, mean spring temperature was frequently selected as an important climate driver, while selected predictors were more diverse for population metrics such as abundance or reproductive success. The climate variable selection approach presented here can help to identify potential climate metrics when there is limited physiological or mechanistic information to make ana priorivariable selection, and is broadly applicable across studies on population responses to climate.more » « less
-
Abstract Climate change is contributing to declines of insects through rising temperatures, altered precipitation patterns, and an increasing frequency of extreme events. The impacts of both gradual and sudden shifts in weather patterns are realized directly on insect physiology and indirectly through impacts on other trophic levels. Here, we investigated direct effects of seasonal weather on butterfly occurrences and indirect effects mediated by plant productivity using a temporally intensive butterfly monitoring dataset, in combination with high‐resolution climate data and a remotely sensed indicator of plant primary productivity. Specifically, we used Bayesian hierarchical path analysis to quantify relationships between weather and weather‐driven plant productivity on the occurrence of 94 butterfly species from three localities distributed across an elevational gradient. We found that snow pack exerted a strong direct positive effect on butterfly occurrence and that low snow pack was the primary driver of reductions during drought. Additionally, we found that plant primary productivity had a consistently negative effect on butterfly occurrence. These results highlight mechanisms of weather‐driven declines in insect populations and the nuances of climate change effects involving snow melt, which have implications for ecological theories linking topographic complexity to ecological resilience in montane systems.more » « less
-
Abstract The fate of insects in the Anthropocene has been widely discussed in the scientific literature, the popular media, and in policy circles. This recent attention is justified because reductions in insect abundance and diversity have the potential to undermine the stability of terrestrial ecosystems. Reports of insect declines have also been accompanied by skepticism that is healthy and to be expected in scientific discussion. However, we are concerned about a prevalent misconception that equates reports from monitored natural areas with the global status of insects. In the vast majority of cases, areas monitored for arthropods are undeveloped and thus do not record or even necessarily reflect the masses of insects that are continuously being impacted by habitat loss to urban, suburban and agricultural expansion. We address this misconception and discuss ways in which conservation and policy can be enhanced by correctly locating results from insect monitoring programs within our broader knowledge of biodiversity loss.more » « less
-
Abstract The potential effects of climate change on plant reproductive phenology include asynchronies with pollinators and reductions in plant fitness, leading to extinction and loss of ecosystem function. In particular, plant phenology is sensitive to extreme weather events, which are occurring with increasing severity and frequency in recent decades and are linked to anthropogenic climate change and shifts in atmospheric circulation. For 15 plant species in a Venezuelan cloud forest, we documented dramatic changes in monthly flower and fruit community composition over a 35‐year time series, from 1983 to 2017, and these changes were linked directly to higher temperatures, lower precipitation, and decreased soil water availability. The patterns documented here do not mirror trends in temperate zones but corroborate results from the Asian tropics. More intense droughts are predicted to occur in the region, which will cause dramatic changes in flower and fruit availability.more » « less
-
Abstract Identifying patterns of pathogen infection in natural systems is crucial to understanding mechanisms of host–pathogen interactions. In this study, we explored how Junonia coenia densovirus (JcDV) infection varies over space and time in populations of the Melissa blue butterfly (Lycaeides melissa: Lycaenidae) using two different host plants. Collections ofL. melissaadults from multiple populations and years, along with host plant tissue and community samples of arthropods found on host plants, were screened to determine JcDV prevalence and load. Additionally, we sampled at multiple time points within a singleL. melissaflight season to investigate intra‐annual variation in infection patterns.We found population‐specific variation in viral prevalence ofL. melissaacross collection years, with historical samples potentially having higher viral prevalence than contemporary samples, although host plant diet was not informative for these patterns. Patterns of infection across multiple generations within a flight season showed that late‐season samples had a higher proportion of JcDV‐positive individuals, suggesting an accumulation of virus over the season. Sequence data from a segment of the JcDV capsid gene showed a lack of viral genetic diversity betweenL. melissacollected from different localities, and little to no viral particles were found in the surrounding environment.Our discovery of temporal variation in infection suggests that multiple sampling efforts must be made when describing pathogen prevalence in multivoltine hosts. Our findings represent an important first step towards further exploration of the ecological factors mediating disease prevalence and host‐specific variability of infection in wild insect populations.more » « less
-
Abstract Ongoing declines in insect populations have led to substantial concern and calls for conservation action. However, even for relatively well studied groups, like butterflies, information relevant to species‐specific status and risk is scattered across field guides, the scientific literature, and agency reports. Consequently, attention and resources have been spent on a minuscule fraction of insect diversity, including a few well studied butterflies. Here we bring together heterogeneous sources of information for 396 butterfly species to provide the first regional assessment of butterflies for the 11 western US states. For 184 species, we use monitoring data to characterize historical and projected trends in population abundance. For another 212 species (for which monitoring data are not available, but other types of information can be collected), we use exposure to climate change, development, geographic range, number of host plants, and other factors to rank species for conservation concern. A phylogenetic signal is apparent, with concentrations of declining and at‐risk species in the families Lycaenidae and Hesperiidae. A geographic bias exists in that many species that lack monitoring data occur in the more southern states where we expect that impacts of warming and drying trends will be most severe. Legal protection is rare among the taxa with the highest risk values: of the top 100 species, one is listed as threatened under the US Endangered Species Act and one is a candidate for listing. Among the many taxa not currently protected, we highlight a short list of species in decline, includingVanessa annabella,Thorybes mexicanus,Euchloe ausonides, andPholisora catullus. Notably, many of these species have broad geographic ranges, which perhaps highlights a new era of insect conservation in which small or fragmented ranges will not be the only red flags that attract conservation attention.more » « less
-
Across the world, grassland declines over the last century have coincided with the declines of many grass-feeding butterflies, and the Carson wandering skipperPseudocopaeodes eunus obscurus(CWS) is one such taxon. The CWS is a federally endangered subspecies of grass skipper butterfly with only 3 remaining populations on the western edge of the Great Basin Desert, in Nevada and California, USA. Since its federal listing under the Endangered Species Act in 2001, it has been monitored annually but has not been the subject of intensive research. To improve our understanding of the CWS, we used count data from surveys over the last several decades to assess CWS population status. In addition, to better understand and characterize current habitat for the CWS, we collected vegetation data from 2021-2022 in areas that are currently occupied by the subspecies, and in areas that have no record of CWS occupancy but otherwise met some or all criteria for suitable habitat. We found that the CWS is in decline and that its habitat is characterized by low to moderate densities of saltgrassDistichlis spicata, the larval host, and the presence of alkaline- or salt-associated nectar resources as well as other saltgrass community associates. We discuss the possibility that the remaining occupied habitat is not necessarily optimal habitat. We also discuss the implications of our status assessment of the CWS for other butterfly taxa with severely restricted ranges in the arid western USA.more » « lessFree, publicly-accessible full text available April 4, 2026
-
Numerous declines have been documented across insect groups, and the potential consequences of insect losses are dire. Butterflies are the most surveyed insect taxa, yet analyses have been limited in geographic scale or rely on data from a single monitoring program. Using records of 12.6 million individual butterflies from >76,000 surveys across 35 monitoring programs, we characterized overall and species-specific butterfly abundance trends across the contiguous United States. Between 2000 and 2020, total butterfly abundance fell by 22% across the 554 recorded species. Species-level declines were widespread, with 13 times as many species declining as increasing. The prevalence of declines throughout all regions in the United States highlights an urgent need to protect butterflies from further losses.more » « lessFree, publicly-accessible full text available March 7, 2026
An official website of the United States government
