skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wettability and morphology of proboscises interweave with hawkmoth evolutionary history
Hovering hawkmoths expend significant energy while feeding, which should select for greater feeding efficiency. Although increased feeding efficiency has been implicitly assumed, it has never been assessed. We hypothesized that hawkmoths have proboscises specialized for gathering nectar passively. Using contact angle and capillary pressure to evaluate capillary action of the proboscis, we conducted a comparative analysis of wetting and absorption properties for 13 species of hawkmoths. We showed that all 13 species have a hydrophilic proboscis. In contradistinction, the proboscises of all other tested lepidopteran species have a wetting dichotomy with only the distal ∼10% hydrophilic. Longer proboscises are more wettable, suggesting that species of hawkmoths with long proboscises are more efficient at acquiring nectar by the proboscis surface than are species with shorter proboscises. All hawkmoth species also show strong capillary pressures which, together with the feeding behaviors we observed, ensure that nectar will be delivered to the food canal efficiently. The patterns we found suggest that different subfamilies of hawkmoths use different feeding strategies. Our comparative approach reveals that hawkmoths are unique among Lepidoptera and highlights the importance of considering the physical characteristics of the proboscis to understand the evolution and diversification of hawkmoths.  more » « less
Award ID(s):
2042937
PAR ID:
10463837
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
The Company of Biologists
Date Published:
Journal Name:
Journal of Experimental Biology
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wagner, William R (Ed.)
    To probe its environment, the flying insect controllably flexes, twists, and maneuvers its antennae by coupling mechanical deformations with the sensory output. We question how the materials properties of insect antennae could influence their performance. A comparative study was conducted on four hawkmoth species: Manduca sexta, Ceratomia catalpae, Manduca quinquemaculata, and Xylophanes tersa. The morphology of the antennae of three hawkmoths that hover while feeding and one putatively non-nectar-feeding hawkmoth (Ceratomia catalpa) do not fundamentally differ, and all the antennae are comb-like (i.e., pectinate), markedly in males but weakly in females. Applying different weights to the free end of extracted cantilevered antennae, we discovered anisotropy in flexural rigidity when the antenna is forced to bend dorsally versus ventrally. The flexural rigidity of male antennae was less than that of females. Compared with the hawkmoths that hover while feeding, Ceratomia catalpae has almost two orders of magnitude lower flexural rigidity. Tensile tests showed that the stiffness of male and female antennae is almost the same. Therefore, the differences in flexural rigidity are explained by the distinct shapes of the antennal pectination. Like bristles in a comb, the pectinations provide extra rigidity to the antenna. We discuss the biological implications of these discoveries in relation to the flight habits of hawkmoths. Flexural anisotropy of antennae is expected in other groups of insects, but the targeted outcome may differ. Our work offers promising new applications of shaped fibers as mechanical sensors. 
    more » « less
  2. Evison, Sophie (Ed.)
    1. Precise pollen placement on floral visitors can improve pollen transfer, but in many plant species, pollen is deposited onto the flexible proboscises of long-tongued insects. These proboscises are curled and uncurled between floral visits, potentially causing pollen to be lost or displaced. Rates of pollen movement and loss resulting from proboscis curling, and hence the potential quality of long-tongued insects as pollinators, are unknown. 2. Here, pollen loss and movement on the proboscises of Manduca sexta (Sphingidae) hawkmoths was experimentally measured. It was predicted that (i) proboscis curling causes pollen loss; (ii) pollen that is not lost is displaced from its deposition site; and (iii) repeated curls result in more displacement. Pollen from Datura wrightii, an important nectar plant for M. sexta, was placed distal to the knee bend on M. sexta proboscises, and the number and location of grains was recorded after proboscis curls. 3. Consistent with the hypotheses, proboscis curling caused significant pollen loss. (i) A single curl resulted in the loss of almost 75% of the pollen from the placement site; after repeated curling, 98% of grains were lost from this site. (ii) A single curl was also sufficient to displace pollen across all surfaces of the proboscis, but (iii) further curling did not affect its distribution across surfaces. 4. Together, these results suggest that precise pollen placement on the proboscises of hawkmoths would be unlikely to increase pollen transfer success. Strategies by which flowering plants might mitigate the effects of pollen loss from visitors with flexible pollen-pickup structures are discussed. 
    more » « less
  3. ABSTRACT Flowering plants can be visited by a wide diversity of pollinating insects; however, the structure of plant–insect interactions for non‐bee pollinators is not well‐known, even though non‐bee insects can play a central role in the pollination of many plant species. Pollination by non‐syrphid flies, such as bee flies (Bombylius majorL., Bombyliidae, Diptera), has often been underappreciated. Bee flies represent a diverse group of long‐tongue nectar‐feeding insects that are often reported as generalists who visit flowers indiscriminately. Here, we used individual‐based pollen transport networks to assess patterns of individual foraging in bee flies over two flowering seasons in a diverse co‐flowering community. Using this approach, we uncover the structure (e.g., modular vs. nested) of bee fly individual foraging and the degree of individual specialisation. We further evaluate the role of resource availability (floral abundance) and intraspecific trait variation (proboscis length and body size) in shaping individual specialisation. Overall, bee flies visited 20 different plant species. However, network analysis shows that individuals are more specialised and tend to partition the floral resource as reflected by the high degree of network modularity. Most bee fly individuals concentrate their foraging on only a few floral resources (two to four plant species) suggesting strong niche partitioning in this group of pollinators. This modular foraging pattern was not explained by differences in resource availability over the season. Proboscis length, however, was negatively related to the level of individual specialisation. Individuals with larger proboscis had larger foraging niches (less specialisation) perhaps due to easier access to a wide range of plant species with different floral tube sizes. Overall, our study reveals high individual specialisation and niche partitioning in bee‐fly interactions, mediated by differences in proboscis length, and with important implications for pollen transfer dynamics, plant–plant competition and plant reproductive success in diverse co‐flowering communities. 
    more » « less
  4. Abstract Previous studies have considered floral humidity to be an inadvertent consequence of nectar evaporation, which could be exploited as a cue by nectar-seeking pollinators. By contrast, our interdisciplinary study of a night-blooming flower, Datura wrightii , and its hawkmoth pollinator, Manduca sexta , reveals that floral relative humidity acts as a mutually beneficial signal in this system. The distinction between cue- and signal-based functions is illustrated by three experimental findings. First, floral humidity gradients in Datura are nearly ten-fold greater than those reported for other species, and result from active (stomatal conductance) rather than passive (nectar evaporation) processes. These humidity gradients are sustained in the face of wind and are reconstituted within seconds of moth visitation, implying substantial physiological costs to these desert plants. Second, the water balance costs in Datura are compensated through increased visitation by Manduca moths, with concomitant increases in pollen export. We show that moths are innately attracted to humid flowers, even when floral humidity and nectar rewards are experimentally decoupled. Moreover, moths can track minute changes in humidity via antennal hygrosensory sensilla but fail to do so when these sensilla are experimentally occluded. Third, their preference for humid flowers benefits hawkmoths by reducing the energetic costs of flower handling during nectar foraging. Taken together, these findings suggest that floral humidity may function as a signal mediating the final stages of floral choice by hawkmoths, complementing the attractive functions of visual and olfactory signals beyond the floral threshold in this nocturnal plant-pollinator system. 
    more » « less
  5. Spencer, Barrett (Ed.)
    Current biomechanical models suggest that butterflies and moths use their proboscis as a drinking straw pulling nectar as a continuous liquid column. Our analyses revealed an alternative mode for fluid uptake: drinking bubble trains that help defeat drag. We combined X-ray phase-contrast imaging, optical video microscopy, micro-computed tomography, phylogenetic models of evolution and fluid mechanics models of bubble-train formation to understand the biomechanics of butterfly and moth feeding. Our models suggest that the bubble-train mechanism appeared in the early evolution of butterflies and moths with a proboscis long enough to coil. We propose that, in addition to the ability to drink a continuous column of fluid from pools, the ability to exploit fluid films by capitalizing on bubble trains would have expanded the range of available food sources, facilitating diversification of Lepidoptera. 
    more » « less