We studied luminescence accompanied by an injection of nitrogen–krypton–helium gas mixtures after passing radiofrequency discharge into dense cold helium gas. In the cold helium gas N2–Kr nanoclusters were formed, with a core of Kr atoms and N2 molecules on the surface. Atomic nitrogen and oxygen resided in the N2 surface layers. When the temperature in the observation zone was in the range of 20–36 K, we observed enhanced emission of oxygen atom β-group and molecular nitrogen Vegard–Kaplan bands from N2–Kr nanoclusters. At these temperatures, nitrogen atoms efficiently recombine on the surface of nanoclusters with the formation of exited nitrogen molecules, leading to enhanced emission of Vegard–Kaplan bands. Simultaneously, the energy transfer from exited nitrogen molecules to the oxygen atoms enhanced O atom β-group emission.
more »
« less
Photoionization of air species as impurities in atmospheric pressure helium plasma
Abstract We revisit the problem of photoionization of small admixtures of nitrogen and oxygen molecules in atmospheric pressure helium plasma originally formulated in the pioneering work of Naidis (2010J. Phys. D: Appl. Phys.43402001). The radiation trapping of resonance emission lines in atomic helium is quantified, and it is demonstrated that photoionization occurs due to radiative decay of the electronicAstate of helium molecules. The collisions and atomic precursors that populate the excitedAstate of the helium molecule are clearly identified. The Einstein probabilities for the transition from bound and quasi-bound rovibrational levels of theAstate to the continuum of the groundXstate are provided. A kinetic scheme for the production of the fast component of ultraviolet emissions in atmospheric pressure helium plasma is proposed. The photoionization of molecular oxygen and molecular nitrogen as impurities in 99.9% and 99.99% purity helium is studied.
more »
« less
- Award ID(s):
- 2010088
- PAR ID:
- 10463858
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Plasma Sources Science and Technology
- Volume:
- 32
- Issue:
- 9
- ISSN:
- 0963-0252
- Page Range / eLocation ID:
- Article No. 095011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Laser cooling is used to produce ultracold atoms and molecules for quantum science and precision measurement applications. Molecules are more challenging to cool than atoms due to their vibrational and rotational internal degrees of freedom. Molecular rotations lead to the use of type-II transitions ( ) for magneto-optical trapping (MOT). When typical red detuned light frequencies are applied to these transitions, sub-Doppler heating is induced, resulting in higher temperatures and larger molecular cloud sizes than realized with the type-I MOTs most often used with atoms. To improve type-II MOTs, Jarviset al(2018Phys. Rev. Lett.120083201) proposed a blue-detuned MOT to be applied after initial cooling and capture with a red-detuned MOT. This was successfully implemented (Burauet al2023Phys. Rev. Lett.130193401; Jorapuret al2024Phys. Rev. Lett.132163403; Liet al2024Phys. Rev. Lett.132233402), realizing colder and denser molecular samples. Very recently, Hallaset al(2024 arXiv:2404.03636) demonstrated a blue-detuned MOT with a ‘1+2’ configuration that resulted in even stronger compression of the molecular cloud. Here, we describe and characterize theoretically the conveyor-belt mechanism that underlies this observed enhanced compression. We perform numerical simulations of the conveyor-belt mechanism using both stochastic Schrödinger equation and optical Bloch equation approaches. We investigate the conveyor-belt MOT characteristics in relation to laser parameters,g-factors and the structure of the molecule, and find that conveyor-belt trapping should be applicable to a wide range of laser-coolable molecules.more » « less
-
Abstract Sharp point electrodes generate significant electric field enhancements where electron impact ionization leads to the formation of electron avalanches that are seeded by photoionization. Photoionization of molecular oxygen due to extreme ultraviolet emissions from molecular nitrogen is a fundamental process in the inception of a positive corona in air. In a positive corona system, the avalanche of electrons in the bulk of the discharge volume is initiated by a specific distribution of photoionization far away from the region of maximum electron density near the electrode where these photons are emitted. Here, we present a new approach to finding the inception conditions for a positive corona, which is based on a differential formulation of the photoionization problem. The proposed iterative solution considers the same inception problem that has been solved in the existing literature by using either an integral approach to photoionization or a differential formulation of photoionization and considering the inception problem as a boundary-value eigenvalue problem. The results are validated by comparisons with previous integral formulations and time dynamic plasma fluid solutions in planar and spherical geometries. The results illustrate ideas advanced in Kaptzov (1950Elektricheskiye Yavleniya v Gazakh i Vacuumep 610) providing a physically transparent connection between an effective secondary electron emission coefficient due to volume photoionization in a positive corona system and the secondary electron emission in conventional Townsend discharge theory. The results also demonstrate the significance of boundary conditions for accurate corona solutions that are based on a differential formulation of photoionization.more » « less
-
We studied luminescence accompanied an injection of the nitrogen-helium gas mixture after passing discharge into dense cold helium gas. Initially, when the experimental beaker was filled with superfluid helium and the nitrogen-helium gas was injected into bulk superfluid helium at T ≈ 1.5 K, the dominant band in the emission spectra was the α-group of nitrogen atoms. At these conditions, the nanoclusters of molecular nitrogen with high concentrations of stabilized nitrogen atoms were formed. When superfluid helium was evaporated from the beaker and the temperature at the bottom of the beaker was increased to T ≈ 20 K, we observed a drastic change in the luminescence spectra. The β-group of oxygen atoms was dominated in the luminescence spectra, and the emission of the α-group became small. At high temperatures (T ≈ 20 K), most of the nitrogen atoms recombine on the surface of N2 nanoclusters with the formation of excited nitrogen molecules. We explained the effect of the enhancement of β-group emission by effective energy transfer from excited nitrogen molecules to the stabilized impurity oxygen atom inside N2 nanoclusters.more » « less
-
Helium metastable densities in the COST Reference Microplasma Jet are estimated for a variety of He/N2 admixtures and dissipated powers by applying a collisional-radiative model to absolutely calibrated optical emission spectroscopy measurements. This is accomplished by delineating the excitation mechanisms that result in the N2(C–B) and N2+(B–X) emission bands, the latter of which is strongly coupled to the presence of helium metastables. A number of other plasma parameters are established and discussed for each operating condition including the electron energy distribution function, reduced electric field, rate constants, and electron density. With these parameters, the reaction rates for the primary ionization pathways are also calculated, emphasizing the importance of helium metastables for discharge sustainment. Good agreement with the existing literature is found for most plasma parameters and for helium metastable densities, in particular. A clear [N2]−1 relationship between the nitrogen concentration and density of helium metastables is demonstrated, as has been identified in previous studies in analogous atmospheric pressure plasma jets. This validates the efficacy of this optical technique for determining helium metastable densities and establishes it as a viable, and in many cases, more accessible alternative to other means of quantifying helium metastables in low-temperature plasmas.more » « less
An official website of the United States government
