skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Brain-eNet: Towards an Enabling Technology for BCI-IoT Systems
Brain-Computer Interface (BCI) and Internet of Things (IoT) systems have recently been amalgamated to create BCIoT. Most of the early applications have focused on the healthcare sector, and more recently, in education, virtual reality, smart homes, and smart vehicles, amongst others. While there are many transversal developing stages that can be satisfied by a single system, no common enabling technology or standards exist. These challenges are address in the proposed platform, Brain-eNet. This technology was developed considering the constraints-space defined by BCIoT real-time mobile applications. This is expected to enable the development of BCIoT systems by providing modular hardware and software resources. Two instances of this platform implementation are provided, a motor intent detection for rehabilitation and an emotion recognition system.  more » « less
Award ID(s):
1827769 2137255 2150415
PAR ID:
10463863
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Typical Internet of Things (IoT) and smart home environments are composed of smart devices that are controlled and orchestrated by applications developed and run in the cloud. Correctness is important for these applications, since they control the home's physical security (i.e. door locks) and systems (i.e. HVAC). Unfortunately, many smart home applications and systems exhibit poor security characteristics and insufficient system support. Instead they force application developers to reason about a combination of complicated scenarios-asynchronous events and distributed devices. This paper demonstrates that existing cloud-based smart home platforms provide insufficient support for applications to correctly deal with concurrency and data consistency issues. These weaknesses expose platform vulnerabilities that affect system correctness and security (e.g. a smart lock erroneously unlocked). To address this, we present OKAPI, an application-level API that provides strict atomicity and event ordering. We evaluate our work using the Samsung SmartThings smart home devices, hub, and cloud infrastructure. In addition to identifying shortfalls of cloud-based smart home platforms, we propose design guidelines to make application developers oblivious of smart home platforms' consistency and concurrency intricacies. 
    more » « less
  2. The global financial landscape is experiencing significant transformation driven by technological advancements and evolving market dynamics. Moreover, blockchain technology has become a pivotal platform with widespread applications, especially in finance. Cross-border payments have emerged as a key area of interest, with blockchain offering inherent benefits such as enhanced security, transparency, and efficiency compared to traditional banking systems. This paper presents a novel framework leveraging blockchain technology and smart contracts to emulate cross-border payments, ensuring interoperability and compliance with international standards such as ISO20022. Key contributions of this paper include a novel prototype framework for implementing smart contracts and web clients for streamlined transactions and a mechanism to translate ISO20022 standard messages. Our framework can provide a practical solution for secure, efficient, and transparent cross-border transactions, contributing to the ongoing evolution of global finance and the emerging landscape of decentralized finance. 
    more » « less
  3. Leveraging recent advances in technologies surrounding the Internet of Things , “smart” water systems are poised to transform water resources management by enabling ubiquitous real-time sensing and control. Recent applications have demonstrated the potential to improve flood forecasting, enhance rainwater harvesting, and prevent combined sewer overflows. However, adoption of smart water systems has been hindered by a limited number of proven case studies, along with a lack of guidance on how smart water systems should be built. To this end, we review existing solutions, and introduce open storm —an open-source, end-to-end platform for real-time monitoring and control of watersheds. Open storm includes (i) a robust hardware stack for distributed sensing and control in harsh environments (ii) a cloud services platform that enables system-level supervision and coordination of water assets, and (iii) a comprehensive, web-based “how-to” guide, available on open-storm.org, that empowers newcomers to develop and deploy their own smart water networks. We illustrate the capabilities of the open storm platform through two ongoing deployments: (i) a high-resolution flash-flood monitoring network that detects and communicates flood hazards at the level of individual roadways and (ii) a real-time stormwater control network that actively modulates discharges from stormwater facilities to improve water quality and reduce stream erosion. Through these case studies, we demonstrate the real-world potential for smart water systems to enable sustainable management of water resources. 
    more » « less
  4. null (Ed.)
    This paper reviews recent developments of Light Emitting Diode (LED) based Visible Light Communication (VLC) technologies and related cyber-physical systems-on-chip (CPSoC) for smart city applications. Critical aspects of LED VLC cyber-physical systems are discussed. Designs of LEDbased VLC CPSoC Integrated Circuits (IC) are depicted. LED VLC technology, as a viable internet of things (IoT) solution, has the potential for various applications for smart cities including smart hospitals, smart homes, smart communities and smart traffics in near future. 
    more » « less
  5. There has been an immense growth in sensors, actuators, and smart devices in recent years, which enable us to better sense, actuate, and understand the physical world. Despite this growth, we have yet to achieve fully intelligent environments. This is, in part, due to the large number of different organizations creating smart devices with proprietary technologies and communication protocols that are not compatible with each other and require significant engineering to incorporate and adapt to specific applications. In this work, we present an easy-to-install and low-cost embedded platform that allows users to rapidly configure a mixture of sensors and actuators. The system is based on the commonly-used Raspberry Pi ecosystem, easily configurable, and does not require users to have prior knowledge of programming, which allows anyone, regardless of background, to use. We also introduce a battery-powered wireless extension module that is suitable for mobile drone applications, where a chord-powered Raspberry Pi is not suitable. We demonstrate the impact our system has on enabling drones with flexible sensing modalities and creating smarter environments by integrating our platform into a variety of intelligent home applications. 
    more » « less