skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Federated Learning under Distributed Concept Drift
Federated Learning (FL) under distributed concept drift is a largely unexplored area. Although concept drift is itself a well-studied phenomenon, it poses particular challenges for FL, because drifts arise staggered in time and space (across clients). Our work is the first to explicitly study data heterogeneity in both dimensions. We first demonstrate that prior solutions to drift adaptation, with their single global model, are ill-suited to staggered drifts, necessitating multiple-model solutions. We identify the problem of drift adaptation as a time-varying clustering problem, and we propose two new clustering algorithms for reacting to drifts based on local drift detection and hierarchical clustering. Empirical evaluation shows that our solutions achieve significantly higher accuracy than existing baselines, and are comparable to an idealized algorithm with oracle knowledge of the ground-truth clustering of clients to concepts at each time step.  more » « less
Award ID(s):
2211882 1919223
PAR ID:
10463991
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
206
ISSN:
2640-3498
Page Range / eLocation ID:
5834-5853
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Federated Learning (FL) under distributed concept drift is a largely unexplored area. Although concept drift is itself a well-studied phenomenon, it poses particular challenges for FL, because drifts arise staggered in time and space (across clients). Our work is the first to explicitly study data heterogeneity in both dimensions. We first demonstrate that prior solutions to drift adaptation, with their single global model, are ill-suited to staggered drifts, necessitating multiple-model solutions. We identify the problem of drift adaptation as a time-varying clustering problem, and we propose two new clustering algorithms for reacting to drifts based on local drift detection and hierarchical clustering. Empirical evaluation shows that our solutions achieve significantly higher accuracy than existing baselines, and are comparable to an idealized algorithm with oracle knowledge of the ground-truth clustering of clients to concepts at each time step. 
    more » « less
  2. Continual Federated Learning (CFL) is a distributed machine learning technique that enables multiple clients to collaboratively train a shared model without sharing their data, while also adapting to new classes without forgetting previously learned ones. This dynamic, adaptive learning process parallels the concept of founda- tion models in FL, where large, pre-trained models are fine-tuned in a decentralized, federated setting. While foundation models in FL leverage pre-trained knowledge as a starting point, CFL continu- ously updates the shared model as new tasks and data distributions emerge, requiring ongoing adaptation. Currently, there are limited evaluation models and metrics in measuring fairness in CFL, and ensuring fairness over time can be challenging as the system evolves. To address this challenge, this article explores temporal fairness in CFL, examining how the fairness of the model can be influenced by the selection and participation of clients over time. Based on individual fairness, we introduce a novel fairness metric that captures temporal aspects of client behavior and evaluates different client selection strategies for their impact on promoting fairness. 
    more » « less
  3. Bellet, Aurelien (Ed.)
    Federated learning (FL) aims to collaboratively train a global model using local data from a network of clients. To warrant collaborative training, each federated client may expect the resulting global model to satisfy some individual requirement, such as achieving a certain loss threshold on their local data. However, in real FL scenarios, the global model may not satisfy the requirements of all clients in the network due to the data heterogeneity across clients. In this work, we explore the problem of global model appeal in FL, which we define as the total number of clients that find that the global model satisfies their individual requirements. We discover that global models trained using traditional FL approaches can result in a significant number of clients unsatisfied with the model based on their local requirements. As a consequence, we show that global model appeal can directly impact how clients participate in training and how the model performs on new clients at inference time. Our work proposes MaxFL, which maximizes the number of clients that find the global model appealing. MaxFL achieves a 22-40% and 18-50% improvement in the test accuracy of training clients and (unseen) test clients respectively, compared to a wide range of FL approaches that tackle data heterogeneity, aim to incentivize clients, and learn personalized/fair models. 
    more » « less
  4. When learning from streaming data, a change in the data distribution, also known as concept drift, can render a previously-learned model inaccurate and require training a new model. We present an adaptive learning algorithm that extends previous drift-detection-based methods by incorporating drift detection into a broader stable-state/reactive-state process. The advantage of our approach is that we can use aggressive drift detection in the stable state to achieve a high detection rate, but mitigate the false positive rate of standalone drift detection via a reactive state that reacts quickly to true drifts while eliminating most false positives. The algorithm is generic in its base learner and can be applied across a variety of supervised learning problems. Our theoretical analysis shows that the risk of the algorithm is (i) statistically better than standalone drift detection and (ii) competitive to an algorithm with oracle knowledge of when (abrupt) drifts occur. Experiments on synthetic and real datasets with concept drifts confirm our theoretical analysis. 
    more » « less
  5. Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices). However, the data distribution among clients is often non-IID in nature, making efficient optimization difficult. To alleviate this issue, many FL algorithms focus on mitigating the effects of data heterogeneity across clients by introducing a variety of proximal terms, some incurring considerable compute and/or memory overheads, to restrain local updates with respect to the global model. Instead, we consider rethinking solutions to data heterogeneity in FL with a focus on local learning generality rather than proximal restriction. To this end, we first present a systematic study informed by second-order indicators to better understand algorithm effectiveness in FL. Interestingly, we find that standard regularization methods are surprisingly strong performers in mitigating data heterogeneity effects. Based on our findings, we further propose a simple and effective method, FedAlign, to overcome data heterogeneity and the pitfalls of previous methods. FedAlign achieves competitive accuracy with state-of-the-art FL methods across a variety of settings while minimizing computation and memory overhead. Code is available at https://github.com/mmendiet/FedAlign. 
    more » « less