skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maximizing Global Model Appeal in Federated Learning
Federated learning (FL) aims to collaboratively train a global model using local data from a network of clients. To warrant collaborative training, each federated client may expect the resulting global model to satisfy some individual requirement, such as achieving a certain loss threshold on their local data. However, in real FL scenarios, the global model may not satisfy the requirements of all clients in the network due to the data heterogeneity across clients. In this work, we explore the problem of global model appeal in FL, which we define as the total number of clients that find that the global model satisfies their individual requirements. We discover that global models trained using traditional FL approaches can result in a significant number of clients unsatisfied with the model based on their local requirements. As a consequence, we show that global model appeal can directly impact how clients participate in training and how the model performs on new clients at inference time. Our work proposes MaxFL, which maximizes the number of clients that find the global model appealing. MaxFL achieves a 22-40% and 18-50% improvement in the test accuracy of training clients and (unseen) test clients respectively, compared to a wide range of FL approaches that tackle data heterogeneity, aim to incentivize clients, and learn personalized/fair models.  more » « less
Award ID(s):
2107024 2045694 2145670
PAR ID:
10545867
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Bellet, Aurelien
Publisher / Repository:
Transactions on Machine Learning Research
Date Published:
Journal Name:
Transactions on machine learning research
ISSN:
2835-8856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Federated learning (FL) is an emerging machine learning paradigm. With FL, distributed data owners aggregate their model updates to train a shared deep neural network collaboratively, while keeping the training data locally. However, FL has little control over the local data and the training process. Therefore, it is susceptible to poisoning attacks, in which malicious or compromised clients use malicious training data or local updates as the attack vector to poison the trained global model. Moreover, the performance of existing detection and defense mechanisms drops significantly in a scaled-up FL system with non-iid data distributions. In this paper, we propose a defense scheme named CONTRA to defend against poisoning attacks, e.g., label-flipping and backdoor attacks, in FL systems. CONTRA implements a cosine-similarity-based measure to determine the credibility of local model parameters in each round and a reputation scheme to dynamically promote or penalize individual clients based on their per-round and historical contributions to the global model. With extensive experiments, we show that CONTRA significantly reduces the attack success rate while achieving high accuracy with the global model. Compared with a state-of-the-art (SOTA) defense, CONTRA reduces the attack success rate by 70% and reduces the global model performance degradation by 50%. 
    more » « less
  2. While prior federated learning (FL) methods mainly consider client heterogeneity, we focus on the Federated Domain Generalization (DG) task, which introduces train-test heterogeneity in the FL context. Existing evaluations in this field are limited in terms of the scale of the clients and dataset diversity. Thus, we propose a Federated DG benchmark that aim to test the limits of current methods with high client heterogeneity, large numbers of clients, and diverse datasets. Towards this objective, we introduce a novel data partition method that allows us to distribute any domain dataset among few or many clients while controlling client heterogeneity. We then introduce and apply our methodology to evaluate 14 DG methods, which include centralized DG methods adapted to the FL context, FL methods that handle client heterogeneity, and methods designed specifically for Federated DG on 7 datasets. Our results suggest that, despite some progress, significant performance gaps remain in Federated DG, especially when evaluating with a large number of clients, high client heterogeneity, or more realistic datasets. Furthermore, our extendable benchmark code will be publicly released to aid in benchmarking future Federated DG approaches. 
    more » « less
  3. Federated learning (FL) involves training a model over massive distributed devices, while keeping the training data localized and private. This form of collaborative learning exposes new tradeoffs among model convergence speed, model accuracy, balance across clients, and communication cost, with new challenges including: (1) straggler problem—where clients lag due to data or (computing and network) resource heterogeneity, and (2) communication bottleneck—where a large number of clients communicate their local updates to a central server and bottleneck the server. Many existing FL methods focus on optimizing along only one single dimension of the tradeoff space. Existing solutions use asynchronous model updating or tiering-based, synchronous mechanisms to tackle the straggler problem. However, asynchronous methods can easily create a communication bottleneck, while tiering may introduce biases that favor faster tiers with shorter response latencies. To address these issues, we present FedAT, a novel Federated learning system with Asynchronous Tiers under Non-i.i.d. training data. FedAT synergistically combines synchronous, intra-tier training and asynchronous, cross-tier training. By bridging the synchronous and asynchronous training through tiering, FedAT minimizes the straggler effect with improved convergence speed and test accuracy. FedAT uses a straggler-aware, weighted aggregation heuristic to steer and balance the training across clients for further accuracy improvement. FedAT compresses uplink and downlink communications using an efficient, polyline-encoding-based compression algorithm, which minimizes the communication cost. Results show that FedAT improves the prediction performance by up to 21.09% and reduces the communication cost by up to 8.5×, compared to state-of-the-art FL methods. 
    more » « less
  4. Federated Learning (FL) enables multiple clients to collaboratively learn a machine learning model without exchanging their own local data. In this way, the server can exploit the computational power of all clients and train the model on a larger set of data samples among all clients. Although such a mechanism is proven to be effective in various fields, existing works generally assume that each client preserves sufficient data for training. In practice, however, certain clients can only contain a limited number of samples (i.e., few-shot samples). For example, the available photo data taken by a specific user with a new mobile device is relatively rare. In this scenario, existing FL efforts typically encounter a significant performance drop on these clients. Therefore, it is urgent to develop a few-shot model that can generalize to clients with limited data under the FL scenario. In this paper, we refer to this novel problem as federated few-shot learning. Nevertheless, the problem remains challenging due to two major reasons: the global data variance among clients (i.e., the difference in data distributions among clients) and the local data insufficiency in each client (i.e., the lack of adequate local data for training). To overcome these two challenges, we propose a novel federated few-shot learning framework with two separately updated models and dedicated training strategies to reduce the adverse impact of global data variance and local data insufficiency. Extensive experiments on four prevalent datasets that cover news articles and images validate the effectiveness of our framework compared with the state-of-the-art baselines. 
    more » « less
  5. Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices). However, the data distribution among clients is often non-IID in nature, making efficient optimization difficult. To alleviate this issue, many FL algorithms focus on mitigating the effects of data heterogeneity across clients by introducing a variety of proximal terms, some incurring considerable compute and/or memory overheads, to restrain local updates with respect to the global model. Instead, we consider rethinking solutions to data heterogeneity in FL with a focus on local learning generality rather than proximal restriction. To this end, we first present a systematic study informed by second-order indicators to better understand algorithm effectiveness in FL. Interestingly, we find that standard regularization methods are surprisingly strong performers in mitigating data heterogeneity effects. Based on our findings, we further propose a simple and effective method, FedAlign, to overcome data heterogeneity and the pitfalls of previous methods. FedAlign achieves competitive accuracy with state-of-the-art FL methods across a variety of settings while minimizing computation and memory overhead. Code is available at https://github.com/mmendiet/FedAlign. 
    more » « less