skip to main content


This content will become publicly available on May 1, 2024

Title: Partial Tidal Disruptions of Main-sequence Stars by Intermediate-mass Black Holes
Abstract We study close encounters of a 1 M ⊙ middle-age main-sequence star (modeled using MESA) with massive black holes through hydrodynamic simulations, and explore in particular the dependence of the outcomes on the black hole mass. We consider here black holes in the intermediate-mass range, M BH = 100–10 4 M ⊙ . Possible outcomes vary from a small tidal perturbation for weak encounters all the way to partial or full disruption for stronger encounters. We find that stronger encounters lead to increased mass loss at the first pericenter passage, in many cases ejecting the partially disrupted star on an unbound orbit. For encounters that initially produce a bound system, with only partial stripping of the star, the fraction of mass stripped from the star increases with each subsequent pericenter passage and a stellar remnant of finite mass is ultimately ejected in all cases. The critical penetration depth that separates bound and unbound remnants has a dependence on the black hole mass when M BH ≲ 10 3 M ⊙ . We also find that the number of successive close passages before ejection decreases as we go from the stellar-mass black hole to the intermediate-mass black hole regime. For instance, after an initial encounter right at the classical tidal disruption limit, a 1 M ⊙ star undergoes 16 (5) pericenter passages before ejection from a 10 M ⊙ (100 M ⊙ ) black hole. Observations of periodic flares from these repeated close passages could in principle indicate signatures of a partial tidal disruption event.  more » « less
Award ID(s):
2108624
NSF-PAR ID:
10464002
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
89
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent analyses have shown that close encounters between stars and stellar black holes occur frequently in dense star clusters. Depending upon the distance at closest approach, these interactions can lead to dissipating encounters such as tidal captures and disruptions, or direct physical collisions, all of which may be accompanied by bright electromagnetic transients. In this study, we perform a wide range of hydrodynamic simulations of close encounters between black holes and main-sequence stars that collectively cover the parameter space of interest, and we identify and classify the various possible outcomes. In the case of nearly head-on collisions, the star is completely disrupted with roughly half of the stellar material becoming bound to the black hole. For more distant encounters near the classical tidal-disruption radius, the star is only partially disrupted on the first pericenter passage. Depending upon the interaction details, the partially disrupted stellar remnant may be tidally captured by the black hole or become unbound (in some cases, receiving a sufficiently large impulsive kick from asymmetric mass loss to be ejected from its host cluster). In the former case, the star will undergo additional pericenter passages before ultimately being disrupted fully. Based on the properties of the material bound to the black hole at the end of our simulations (in particular, the total bound mass and angular momentum), we comment upon the expected accretion process and associated electromagnetic signatures that are likely to result. 
    more » « less
  2. Abstract Close encounters between neutron stars and main-sequence stars occur in globular clusters and may lead to various outcomes. Here we study encounters resulting in the tidal disruption of the star. Using N -body models, we predict the typical stellar masses in these disruptions and the dependence of the event rate on the host cluster properties. We find that tidal disruption events occur most frequently in core-collapsed globular clusters and that roughly 25% of the disrupted stars are merger products (i.e., blue straggler stars). Using hydrodynamic simulations, we model the tidal disruptions themselves (over timescales of days) to determine the mass bound to the neutron star and the properties of the accretion disks formed. In general, we find roughly 80%–90% of the initial stellar mass becomes bound to the neutron star following disruption. Additionally, we find that neutron stars receive impulsive kicks of up to about 20 km s −1 as a result of the asymmetry of unbound ejecta; these kicks place these neutron stars on elongated orbits within their host cluster, with apocenter distances well outside the cluster core. Finally, we model the evolution of the (hypercritical) accretion disks on longer timescales (days to years after disruption) to estimate the accretion rate onto the neutron stars and accompanying spin-up. As long as ≳1% of the bound mass accretes onto the neutron star, millisecond spin periods can be attained. We argue the growing numbers of isolated millisecond pulsars observed in globular clusters may have formed, at least in part, through this mechanism. In the case of significant mass growth, some of these neutron stars may collapse to form low-mass (≲3 M ⊙ ) black holes. 
    more » « less
  3. Abstract Tidal disruption events with tidal radius r t and pericenter distance r p are characterized by the quantity β = r t / r p , and “deep encounters” have β ≫ 1. It has been assumed that there is a critical β ≡ β c ∼ 1 that differentiates between partial and full disruption: for β < β c a fraction of the star survives the tidal interaction with the black hole, while for β > β c the star is completely destroyed, and hence all deep encounters should be full. Here we show that this assumption is incorrect by providing an example of a β = 16 encounter between a γ = 5/3, solar-like polytrope and a 10 6 M ⊙ black hole—for which previous investigations have found β c ≃ 0.9—that results in the reformation of a stellar core post-disruption that comprises approximately 25% of the original stellar mass. We propose that the core reforms under self-gravity, which remains important because of the compression of the gas both near pericenter, where the compression occurs out of the orbital plane, and substantially after pericenter, where compression is within the plane. We find that the core forms on a bound orbit about the black hole, and we discuss the corresponding implications of our findings in the context of recently observed, repeating nuclear transients. 
    more » « less
  4. ABSTRACT

    Strong dynamical interactions among stars and compact objects are expected in a variety of astrophysical settings, such as star clusters and the disks of active galactic nuclei. Via a suite of three-dimensional hydrodynamics simulations using the moving-mesh code arepo, we investigate the formation of transient phenomena and their properties in close encounters between an $2\, {\rm M}_{\odot }$ or $20\, {\rm M}_{\odot }$ equal-mass circular binary star and single $20\, {\rm M}_{\odot }$ black hole (BH). Stars can be disrupted by the BH during dynamical interactions, naturally producing electromagnetic transient phenomena. Encounters with impact parameters smaller than the semimajor axis of the initial binary frequently lead to a variety of transients whose electromagnetic signatures are qualitatively different from those of ordinary disruption events involving just two bodies. These include the simultaneous or successive disruptions of both stars and one full disruption of one star accompanied by successive partial disruptions of the other star. On the contrary, when the impact parameter is larger than the semimajor axis of the initial binary, the binary is either simply tidally perturbed or dissociated into bound and unbound single stars (‘micro-Hills’ mechanism). The dissociation of $20\, {\rm M}_{\odot }$ binaries can produce a runaway star and an active BH moving away from one another. Also, the binary dissociation can either produce an interacting binary with the BH, or a non-interacting, hard binary; both could be candidates of BH high- and low-mass X-ray binaries. Hence, our simulations especially confirm that strong encounters can lead to the formation of the (generally difficult to form) BH low-mass X-ray binaries.

     
    more » « less
  5. null (Ed.)
    ABSTRACT In dense star clusters, such as globular and open clusters, dynamical interactions between stars and black holes (BHs) can be extremely frequent, leading to various astrophysical transients. Close encounters between a star and a stellar mass BH make it possible for the star to be tidally disrupted by the BH. Due to the relative low mass of the BH and the small cross-section of the tidal disruption event (TDE) for cases with high penetration, disruptions caused by close encounters are usually partial disruptions. The existence of the remnant stellar core and its non-negligible mass compared to the stellar mass BH alters the accretion process significantly. We study this problem with SPH simulations using the code Phantom, with the inclusion of radiation pressure, which is important for small mass BHs. Additionally, we develop a new, more general method of computing the fallback rate which does not rely on any approximation. Our study shows that the powerlaw slope of the fallback rate has a strong dependence on the mass of the BH in the stellar mass BH regime. Furthermore, in this regime, self-gravity of the fallback stream and local instabilities become more significant, and cause the disrupted material to collapse into small clumps before returning to the BH. This results in an abrupt increase of the fallback rate, which can significantly deviate from a powerlaw. Our results will help in the identification of TDEs by stellar mass BHs in dense clusters. 
    more » « less