Species interactions that vary across environments can create geographical mosaics of genetic coevolution. However, traits mediating species interactions are sometimes culturally inherited. Here we show that traditions of interspecies communication between people and wild birds vary in a culturally determined geographical mosaic. Honey hunters in different parts of Africa use different calls to communicate with greater honeyguides (Indicator indicator) that lead them to bees’ nests. We show experimentally that honeyguides in Tanzania and Mozambique discriminate among honey hunters’ calls, responding more readily to local than to foreign calls. This was not explained by variation in sound transmission and instead suggests that honeyguides learn local human signals. We discuss the forces stabilizing and diversifying interspecies communication traditions, and the potential for cultural coevolution between species.
more »
« less
Do honey badgers and greater honeyguide birds cooperate to access bees' nests? Ecological evidence and honey‐hunter accounts
Abstract In parts of Africa, greater honeyguides (Indicator indicator) lead people to bees' nests, after which people harvest the honey, and make beeswax and larvae accessible to the honeyguide. In scientific and popular literature, a similar cooperative relationship is frequently described between honeyguides and honey badgers (Mellivora capensis), yet the evidence that this occurs is unclear. Such a partnership may have implications for the origins of our own species' cooperation with honeyguides and for the ecology and conservation of both honey badgers and honeyguides. Here, we review the evidence that honey badgers and honeyguides cooperate to access bees' nests, drawing from the published literature, from our own observations whilst studying both species, and by conducting 394 interviews with honey‐hunters in 11 communities across nine African countries. We find that the scientific evidence relies on incomplete and second‐hand accounts and does not convincingly indicate that the two species cooperate. The majority of honey‐hunters we interviewed were similarly doubtful about the interaction, but many interviewees in the Hadzabe, Maasai, and mixed culture communities in Tanzania reported having seen honey badgers and honeyguides interact, and think that they do cooperate. This complementary approach suggests that the most likely scenario is that the interaction does occur but is highly localized or extremely difficult to observe, or both. With substantial uncertainty remaining, we outline empirical studies that would clarify whether and where honeyguides and honey badgers cooperate, and emphasize the value of integrating scientific and cultural knowledge in ecology.
more »
« less
- Award ID(s):
- 2200221
- PAR ID:
- 10464021
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Zoology
- Volume:
- 321
- Issue:
- 1
- ISSN:
- 0952-8369
- Format(s):
- Medium: X Size: p. 22-32
- Size(s):
- p. 22-32
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Daniel, Sloan (Ed.)Abstract Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture’s most important pollinator. Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. One factor that may influence colony health is the microbial community. Indeed, the honey bee worker digestive tract harbors a characteristic community of bee-specific microbes, and the composition of this community is known to impact honey bee health. However, the honey bee is a superorganism, a colony of eusocial insects with overlapping generations where nestmates cooperate, building a hive, gathering and storing food, and raising brood. In contrast to what is known regarding the honey bee worker gut microbiome, less is known of the microbes associated with developing brood, with food stores, and with the rest of the built hive environment. More recently, the microbe Bombella apis was identified as associated with nectar, with developing larvae, and with honey bee queens. This bacterium is related to flower-associated microbes such as Saccharibacter floricola and other species in the genus Saccharibacter, and initial phylogenetic analyses placed it as sister to these environmental bacteria. Here, we used comparative genomics of multiple honey bee-associated strains and the nectar-associated Saccharibacter to identify genomic changes that may be associated with the ecological transition to honey bee association. We identified several genomic differences in the honey bee-associated strains, including a complete CRISPR/Cas system. Many of the changes we note here are predicted to confer upon Bombella the ability to survive in royal jelly and defend themselves against mobile elements, including phages. Our results are a first step toward identifying potential function of this microbe in the honey bee superorganism.more » « less
-
Abstract Conflict between genes inherited from the mother (matrigenes) and the father (patrigenes) is predicted to arise during social interactions among offspring if these genes are not evenly distributed among offspring genotypes. This intragenomic conflict drives parent-specific transcription patterns in offspring resulting from parent-specific epigenetic modifications. Previous tests of the kinship theory of intragenomic conflict in honey bees (Apis mellifera) provided evidence in support of theoretical predictions for variation in worker reproduction, which is associated with extreme variation in morphology and behavior. However, more subtle behaviors – such as aggression – have not been extensively studied. Additionally, the canonical epigenetic mark (DNA methylation) associated with parent-specific transcription in plant and mammalian model species does not appear to play the same role as in honey bees, and thus the molecular mechanisms underlying intragenomic conflict in this species is an open area of investigation. Here, we examined the role of intragenomic conflict in shaping aggression in honey bee workers through a reciprocal cross design and Oxford Nanopore direct RNA sequencing. We attempted to probe the underlying regulatory basis of this conflict through analyses of parent-specific RNA m6A and alternative splicing patterns. We report evidence that intragenomic conflict occurs in the context of honey bee aggression, with increased paternal and maternal allele-biased transcription in aggressive compared to non-aggressive bees, and higher paternal allele-biased transcription overall. However, we found no evidence to suggest that RNA m6A or alternative splicing mediate intragenomic conflict in this species.more » « less
-
Brunet, Johanne (Ed.)Abstract Honey bees (Apis mellifera L. Hymeoptera: Apidae) use hydrogen peroxide (synthesized by excreted glucose oxidase) as an important component of social immunity. However, both tolerance of hydrogen peroxide and the production of glucose oxidase in honey is costly. Hydrogen peroxide may also be encountered by honey bees at high concentrations in nectar while foraging, however despite its presence both in their foraged and stored foods, it is unclear if and how bees monitor concentrations of, and their behavioral responses to, hydrogen peroxide. The costs of glucose oxidase production and the presence of hydrogen peroxide in both nectar and honey suggest hypotheses that honey bees preferentially forage on hydrogen peroxide supplemented feed syrups at certain concentrations, and avoid feed syrups supplemented with hydrogen peroxide at concentrations above some tolerance threshold. We test these hypotheses and find that, counter to expectation, honey bees avoid glucose solutions supplemented with field-relevant hydrogen peroxide concentrations and either avoid or don’t differentiate supplemented sucrose solutions when given choice assays. This is despite honey bees showing high tolerance for hydrogen peroxide in feed solutions, with no elevated mortality until concentrations of hydrogen peroxide exceed 1% (v/v) in solution, with survival apparent even at concentrations up to 10%. The behavioral interaction of honey bees with hydrogen peroxide during both within-colony synthesis in honey and when foraging on nectar therefore likely relies on interactions with other indicator molecules, and maybe constrained evolutionarily in its plasticity, representing a constitutive immune mechanism.more » « less
-
Honey bees are social insects that live in large groups called colonies, within structures known as hives. The young adult bees stay within the hive to build nests and care for the young, while the older bees leave the hive to forage for food. Honey bees store food and other valuable resources in their hives, so they are often targeted by predators, parasites and ‘robber’ bees from other colonies. Therefore, it is important for bees to determine whether individuals trying to enter the nest are group members or intruders. While it is known that social insects use blends of waxy chemicals called cuticular hydrocarbons to identify group members at the entrance to the colony, it is not clear how members of the same colony acquire a similar blend of cuticular hydrocarbons. Some previous work suggested that in some ant species (which are also social insects), colony members exchange cuticular hydrocarbons with each other so that all members of the colony are covered with a similar blend of chemicals. However, it was not known whether honey bees also share cuticular hydrocarbons between colony members in order to identify members of a hive. Vernier et al. used chemical, molecular and behavioral approaches to study the cuticular hydrocarbons found on honey bees. The results show that, rather than exchanging chemicals with other members of their colony, individual bees make their own blends of cuticular hydrocarbons. As a bee ages it makes different blends of cuticular hydrocarbons, and by the time it starts to leave the hive to forage it makes a blend that is specific to the colony it belongs to. The production of this final blend is influenced by the environment within the hive. Thus, the findings of Vernier et al. indicate that honey bees guarding the entrance to a hive can only identify non-colony-member forager bees as intruders, rather than any non-colony-member bee that happens upon the hive entrance. Honey bees play an essential role in pollinating many crop plants so understanding how these insects maintain their social groups may help to improve agriculture in the future. Furthermore, this work may aid our understanding of how other social insects interact in a variety of biological situations.more » « less
An official website of the United States government
