Abstract In parts of Africa, greater honeyguides (Indicator indicator) lead people to bees' nests, after which people harvest the honey, and make beeswax and larvae accessible to the honeyguide. In scientific and popular literature, a similar cooperative relationship is frequently described between honeyguides and honey badgers (Mellivora capensis), yet the evidence that this occurs is unclear. Such a partnership may have implications for the origins of our own species' cooperation with honeyguides and for the ecology and conservation of both honey badgers and honeyguides. Here, we review the evidence that honey badgers and honeyguides cooperate to access bees' nests, drawing from the published literature, from our own observations whilst studying both species, and by conducting 394 interviews with honey‐hunters in 11 communities across nine African countries. We find that the scientific evidence relies on incomplete and second‐hand accounts and does not convincingly indicate that the two species cooperate. The majority of honey‐hunters we interviewed were similarly doubtful about the interaction, but many interviewees in the Hadzabe, Maasai, and mixed culture communities in Tanzania reported having seen honey badgers and honeyguides interact, and think that they do cooperate. This complementary approach suggests that the most likely scenario is that the interaction does occur but is highly localized or extremely difficult to observe, or both. With substantial uncertainty remaining, we outline empirical studies that would clarify whether and where honeyguides and honey badgers cooperate, and emphasize the value of integrating scientific and cultural knowledge in ecology.
more »
« less
Culturally determined interspecies communication between humans and honeyguides
Species interactions that vary across environments can create geographical mosaics of genetic coevolution. However, traits mediating species interactions are sometimes culturally inherited. Here we show that traditions of interspecies communication between people and wild birds vary in a culturally determined geographical mosaic. Honey hunters in different parts of Africa use different calls to communicate with greater honeyguides (Indicator indicator) that lead them to bees’ nests. We show experimentally that honeyguides in Tanzania and Mozambique discriminate among honey hunters’ calls, responding more readily to local than to foreign calls. This was not explained by variation in sound transmission and instead suggests that honeyguides learn local human signals. We discuss the forces stabilizing and diversifying interspecies communication traditions, and the potential for cultural coevolution between species.
more »
« less
- Award ID(s):
- 2200221
- PAR ID:
- 10524235
- Publisher / Repository:
- Science
- Date Published:
- Journal Name:
- Science
- Volume:
- 382
- Issue:
- 6675
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 1155 to 1158
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Coevolution between plants and insects is thought to be responsible for generating biodiversity. Extensive research has focused largely on antagonistic herbivorous relationships, but mutualistic pollination systems also likely contribute to diversification. Here we describe an example of chemically-mediated mutualistic species interactions affecting trait evolution and lineage diversification. We show that volatile compounds produced by closely related species of Zamia cycads are more strikingly different from each other than are other phenotypic characters, and that two distantly related pollinating weevil species have specialized responses only to volatiles from their specific host Zamia species. Plant transcriptomes show that approximately a fifth of genes related to volatile production are evolving under positive selection, but we find no differences in the relative proportion of genes under positive selection in different categories. The importance of phenotypic divergence coupled with chemical communication for the maintenance of this obligate mutualism highlights chemical signaling as a key mechanism of coevolution between cycads and their weevil pollinators.more » « less
-
Bats are the second largest mammalian order, with over 1,300 species. These animals show diverse behaviors, diets, and habitats. Most bats produce ultrasonic vocalizations and perceive their environment by processing information carried by returning echoes of their calls. Echolocation is achieved through a sophisticated audio-vocal system that allows bats to emit and detect frequencies that can range from ten to hundreds of kilohertz. In addition, most bat species are gregarious, and produce social communication calls that vary in complexity, form, and function across species. In this article, we (a) highlight the value of bats as model species for research on social communication, (b) review behavioral and neurophysiological studies of bat acoustic communication signal production and processing, and (c) discuss important directions for future research in this field. We propose that comparative studies of bat acoustic communication can provide new insights into sound processing and vocal learning across the animal kingdom.more » « less
-
Male frogs court females from within crowded choruses, selecting for mechanisms allowing them to call at favourable times relative to the calls of rivals and background chorus noise. To accomplish this, males must continuously evaluate the fluctuating acoustic scene generated by their competitors for opportune times to call. Túngara frogs produce highly frequency- and amplitude-modulated calls from within dense choruses. We used similarly frequency- and amplitude-modulated playback tones to investigate the sensory basis of their call-timing decisions. Results revealed that different frequencies present throughout this species’ call differed in their degree of call inhibition, and that lower-amplitude tones were less inhibitory. Call-timing decisions were then driven by fluctuations in inhibition arising from underlying frequency- and amplitude-modulation patterns, with tone transitions that produced steeper decreases in inhibition having higher probabilities of triggering calls. Interactions between the varied behavioural sensitivities to different conspecific call frequencies revealed here, and the stereotyped amplitude- and frequency-modulation patterns present in this species’ calls, can explain previously surprising patterns observed in túngara frog choruses. This highlights the importance of understanding the specific sensory drivers underpinning conspecific signalling interactions, and reveals how sensory systems can mediate the interplay between signal perception and production to facilitate adaptive communication strategies.more » « less
-
Abstract Phenological synchrony enables species to occur when conditions are optimal for survival. While phenological synchrony between butterflies and their host plants has been extensively documented, the importance of phenology in maintaining interspecies interactions, such as mimicry, is less understood. Mimicry occurs when a species (i.e. the mimic) evolves a phenotypic resemblance to an unpalatable species (i.e. the model), resulting in protection against predation for the mimic. Theory predicts that in Batesian mimicry systems, models should appear seasonally before their mimics to give predators sufficient time to learn, recognize, and avoid their aposematic signal (i.e. model-first hypothesis). Here, we use citizen science data from iNaturalist to test these long-standing predictions. To understand how mimicry influences the evolution of different phenological strategies, we estimate onset phenology in two systems: the defended model species Battus philenor and its classic Batesian mimic Limenitis arthemis astyanax, and the more complex system consisting of Mullerian co-mimics Danaus plexippus and Limenitis archippus. Our results support the model-first hypothesis and demonstrate that unpalatable models appear significantly before their mimics across large geographical scales. This research highlights a new avenue for utilizing large-scale citizen science datasets to address long-standing questions about how phenology impacts complex ecological interactions.more » « less
An official website of the United States government

