Abstract The spatial distribution of the geochemical domains hosting recycled crust and primordial (high‐3He/4He) reservoirs, and how they are linked to mantle convection, are poorly understood. Two continent‐sized seismic anomalies located near the core‐mantle boundary—called the Large Low Shear Wave Velocity Provinces (LLSVPs)—are potential geochemical reservoir hosts. It has been suggested that high‐3He/4He hotspots are spatially confined to the LLSVPs, hotspots sampling recycled continental crust are associated with only one of the LLSVPs, and recycled continental crust shows no relationship with latitude. We reevaluate the links between LLSVPs and isotopic signatures of hotspot lavas using improved mantle flow models including plume conduit advection. While most hotspots with the highest‐3He/4He can indeed be traced to the LLSVP interiors, at least one high‐3He/4He hotspot, Yellowstone, is located outside of the LLSVPs. This suggests high‐3He/4He is not geographically confined to the LLSVPs. Instead, a positive correlation between hotspot buoyancy flux and maximum hotspot3He/4He suggests that it is plume dynamics (i.e., buoyancy), not geography, which determines whether a dense, deep, and possibly widespread high‐3He/4He reservoir is entrained. We also show that plume‐fed EM hotspots (enriched mantle, with low‐143Nd/144Nd), signaling recycled continental crust, are spatially linked to both LLSVPs, and located primarily in the southern hemisphere. Lastly, we confirm that hotspots sampling HIMU (“high‐μ,” or high238U/204Pb) domains are not spatially limited to the LLSVPs. These findings clarify and advance our understanding of deep mantle reservoir distributions, and we discuss how continental and oceanic crust subduction is consistent with the spatial decoupling of EM and HIMU.
more »
« less
Geodynamic Evolution of the East African Superplume: Insights From Volcanism in the Western Turkana Basin
Abstract There is a consensus that volcanism along the East African Rift System (EARS) is related to plume activities. However, because of our limited knowledge of the local lithospheric mantle, the dynamics of the plume are poorly constrained by magma chemistry. The Turkana Basin is one of the best places to study plume‐related volcanism because the lithospheric mantle there is unusually thin. New Ar‐Ar geochronology and geochemical data on lavas from western Turkana show that Eocene volcanics have relatively low206Pb/204Pb (<19.1) and high εNd (>3.78). Their relatively high Ba/Rb (35–78) ratios suggest contributions from the shallow lithospheric mantle. Oligo‐Miocene Turkana volcanics have HIMU‐ and EMI‐ type enriched mantle signatures with overall lower Ba/Rb ratios, which is consistent with partial melting of plume material. Pliocene and younger Turkana volcanics have low Ba/Rb and Sr‐Nd‐Pb isotope ratios that resemble those of Ethiopian volcanics with elevated3He/4He ratios. This temporal variation can be reconciled with a layered plume model where an outer layer of ancient recycled oceanic crust and sediment overlies more primitive lower mantle material. Beneath Ethiopia, the outer layer of the plume is either missing or punctured by the delamination of the thicker overlying lithospheric mantle atca.30 Ma, an event that would have facilitated the rapid upwelling of the inner portion of the plume and triggered the Ethiopian flood volcanism. The outer layer of the plume may be thicker in the southern EARS, which could explain the occurrence of young HIMU‐ and EMI‐type volcanics with primordial noble gas signatures.
more »
« less
- Award ID(s):
- 2021591
- PAR ID:
- 10464063
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 128
- Issue:
- 9
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ethiopia's Cenozoic flood basalt magmatism, uplift, and rifting have been attributed to one or more mantle plumes. The Nubian plate, however, has drifted 500–1,000 km north since initial magmatism at ∼45 Ma, having developed above mantle that now underlies the northern Tanzania craton and the low‐lying Turkana Depression. Unfortunately, our knowledge of mantle wavespeed structure and mantle transition zone (MTZ) topography below these regions is poorest, due to a historical lack of seismograph stations. The same data gap means we lack constraints on lithospheric structure in and around the NW–SE trending Mesozoic Anza rift. We exploit data from new seismograph networks in the Turkana Depression and neighboring northern Uganda to develop AFRP22, a new African absolute P‐wavespeed tomographic model that resolves whole mantle structure along the entire East African rift system. We also map MTZ thickness using Ps receiver functions. East Africa's thinnest MTZ (∼25 km thinning) underlies the northwest Turkana Depression. AFRP22 reveals a co‐located, previously unrecognized, slow wavespeed plume tail, extending from the MTZ, deep into the lower mantle. This plume may thus have contributed, along with the African Superplume, to the development of the 45–30 Ma flood basalt province that preceded extension. Pervasive sub‐lithospheric slow wavespeeds imply that Turkana's present‐day low elevation is explained best by Mesozoic and Cenozoic‐age crustal thinning. At ∼100 km depth, AFRP22 illuminates a fast wavespeed SE Ethiopian plateau. In addition to governing the northernmost limit of Mesozoic Anza rifting, the refractory nature of this lithospheric block likely minimized Cenozoic flood basalt magmatism there.more » « less
-
Abstract The Icelandic hotspot has erupted basaltic magma with the highest mantle‐derived3He/4He over a period spanning much of the Cenozoic, from the early‐Cenozoic Baffin Island‐West Greenland flood basalt province (49.8RA), to mid‐Miocene lavas in northwest Iceland (40.2 to 47.5RA), to Pleistocene lavas in Iceland's neovolcanic zone (34.3RA). The Baffin Island lavas transited through and potentially assimilated variable amounts of Precambrian continental basement. We use geochemical indicators sensitive to continental crust assimilation (Nb/Th, Ce/Pb, MgO) to identify the least crustally contaminated lavas. Four lavas, identified as “least crustally contaminated,” have high MgO (>15 wt.%), and Nb/Th and Ce/Pb that fall within the mantle range (Nb/Th = 15.6 ± 2.6, Ce/Pb = 24.3 ± 4.3). These lavas have87Sr/86Sr = 0.703008–0.703021,143Nd/144Nd = 0.513094–0.513128,176Hf/177Hf = 0.283265–0.283284,206Pb/204Pb = 17.7560–17.9375,3He/4He up to 39.9RA, and mantle‐like δ18O of 5.03–5.21‰. The radiogenic isotopic compositions of the least crustally contaminated lavas are more geochemically depleted than Iceland high‐3He/4He lavas, a shift that cannot be explained by continental crust assimilation in the Baffin suite. Thus, we argue for the presence oftwogeochemically distinct high‐3He/4He components within the Iceland plume. Additionally, the least crustally contaminated primary melts from Baffin Island‐West Greenland have higher mantle potential temperatures (1510 to 1630 °C) than Siqueiros mid‐ocean ridge basalts (1300 to 1410 °C), which attests to a hot, buoyant plume origin for early Iceland plume lavas. These observations support the contention that the geochemically heterogeneous high‐3He/4He domain is dense, located in the deep mantle, and sampled by only the hottest plumes.more » « less
-
Abstract A major goal in Earth Science has been to understand how geochemical characteristics of lavas at the Earth's surface relate to the location and formation history of specific regions in the Earth's interior. For example, some of the strongest evidence for the preservation of primitive material comes from low4He/3He ratios in ocean island basalts, but the location of the primitive helium reservoir(s) remains unknown. Here we combine whole‐mantle seismic tomography, simulations of mantle flow, and a global compilation of new and existing measurements of the4He/3He ratios in ocean island basalts to constrain the source location of primitive4He/3He material. Our geodynamic simulations predict the present‐day surface expression of plumes to be laterally offset from their lower mantle source locations. When this lateral offset is accounted for, a strong relationship emerges between minimum4He/3He ratios in oceanic basalts and seismically slow regions, which are generally located within the two large low shear‐wave velocity provinces (LLSVPs). Conversely, no significant relationship is observed between maximum208Pb*/206Pb*ratios and seismically slow regions in the lowermost mantle. These results indicate that primitive materials are geographically restricted to LLSVPs, while recycled materials are more broadly distributed across the lower mantle. The primitive nature of the LLSVPs indicates these regions are not composed entirely of recycled slabs, while complementary xenon and tungsten isotopic anomalies require the primitive portion of the LLSVPs to have formed during Earth's accretion, survived the Moon‐forming giant impact, and remained relatively unmixed during the subsequent 4.5 billion years of mantle convection.more » « less
-
Abstract Mantle plumes contain heterogenous chemical components and sample variable depths of the mantle, enabling glimpses into the compositional structure of Earth's interior. In this study, we evaluated ocean island basalts (OIB) from nine plume locations to provide a global and systematic assessment of the relationship betweenfO2and He‐Sr‐Nd‐Pb‐W‐Os isotopic compositions. Ocean island basalts from the Pacific (Austral Islands, Hawaii, Mangaia, Samoa, Pitcairn), Atlantic (Azores, Canary Islands, St. Helena), and Indian Oceans (La Réunion) reveal thatfO2in OIB is heterogeneous both within and among hotspots. Taken together with previous studies, global OIB have elevated and heterogenousfO2(average = +0.5 ∆FMQ; 2SD = 1.5) relative to prior estimates of global mid‐ocean ridge basalts (MORB; average = −0.1 ∆FMQ; 2SD = 0.6), though many individual OIB overlap MORB. Specific mantle components, such as HIMU and enriched mantle 2 (EM2), defined by radiogenic Pb and Sr isotopic compositions compared to other OIB, respectively, have distinctly highfO2based on statistical analysis. ElevatedfO2in OIB samples of these components is associated with higher whole‐rock CaO/Al2O3and olivine CaO content, which may be linked to recycled carbonated oceanic crust. EM1‐type and geochemically depleted OIB are generally not as oxidized, possibly due to limited oxidizing potential of the recycled material in the enriched mantle 1 (EM1) component (e.g., sediment) or lack of recycled materials in geochemically depleted OIB. Despite systematic offset of thefO2among EM1‐, EM2‐, and HIMU‐type OIB, geochemical indices of lithospheric recycling, such as Sr‐Nd‐Pb‐Os isotopic systems, generally do not correlate withfO2.more » « less